1
|
Gao K, Donati A, Ainsworth J, Wu D, Terner ER, Perry MW. Deep conservation complemented by novelty and innovation in the insect eye ground plan. Proc Natl Acad Sci U S A 2025; 122:e2416562122. [PMID: 39793041 PMCID: PMC11725883 DOI: 10.1073/pnas.2416562122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function. We find that flies, mosquitos, butterflies, moths, beetles, wasps, honeybees, and crickets use homologous developmental programs to pattern their retinas. Transcription factor expression can be used to establish homology of different photoreceptor (PR) types across the insects: Prospero (Pros) for R7, Spalt (Sal) for R7+R8, and Defective proventriculus (Dve) for R1-6. Using gene knockout (CRISPR/Cas9) in houseflies, butterflies, and crickets and gene knockdown (RNAi) in beetles, we found that like Drosophila, EGFR and Sevenless (Sev) signaling pathways are required to recruit motion and color vision PRs, though Drosophila have a decreased reliance on Sev signaling relative to other insects. Despite morphological and physiological variation across species, retina development passes through a highly conserved phylotypic stage when the unit eyes (ommatidia) are first patterned. This patterning process likely represents an "insect eye ground plan" that is established by an ancient developmental program. We identify three types of developmental patterning modifications (ground plan modification, nonstochastic patterns, and specialized regions) that allow for the diversification of insect eyes. We suggest that developmental divergence after the ground plan is established is responsible for the exceptional diversity observed across insect visual systems.
Collapse
Affiliation(s)
- Ke Gao
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Antoine Donati
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Julia Ainsworth
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Di Wu
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Eleanor R. Terner
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Michael W. Perry
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Liang ZL, Zhang TH, Muinde J, Fan WL, Dong ZQ, Wu FM, Huang ZZ, Ge SQ. Ultrastructure and Spectral Characteristics of the Compound Eye of Asiophrida xanthospilota (Baly, 1881) (Coleoptera, Chrysomelidae). INSECTS 2024; 15:532. [PMID: 39057265 PMCID: PMC11277293 DOI: 10.3390/insects15070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (μCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.
Collapse
Affiliation(s)
- Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Li Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Qun Dong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Chua NJ, Makarova AA, Gunn P, Villani S, Cohen B, Thasin M, Wu J, Shefter D, Pang S, Xu CS, Hess HF, Polilov AA, Chklovskii DB. A complete reconstruction of the early visual system of an adult insect. Curr Biol 2023; 33:4611-4623.e4. [PMID: 37774707 DOI: 10.1016/j.cub.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
For most model organisms in neuroscience, research into visual processing in the brain is difficult because of a lack of high-resolution maps that capture complex neuronal circuitry. The microinsect Megaphragma viggianii, because of its small size and non-trivial behavior, provides a unique opportunity for tractable whole-organism connectomics. We image its whole head using serial electron microscopy. We reconstruct its compound eye and analyze the optical properties of the ommatidia as well as the connectome of the first visual neuropil-the lamina. Compared with the fruit fly and the honeybee, Megaphragma visual system is highly simplified: it has 29 ommatidia per eye and 6 lamina neuron types. We report features that are both stereotypical among most ommatidia and specialized to some. By identifying the "barebones" circuits critical for flying insects, our results will facilitate constructing computational models of visual processing in insects.
Collapse
Affiliation(s)
- Nicholas J Chua
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Pat Gunn
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Sonia Villani
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Ben Cohen
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Myisha Thasin
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Jingpeng Wu
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Deena Shefter
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alexey A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitri B Chklovskii
- Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA; Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
5
|
Huang M, Meng JY, Zhou L, Yu C, Zhang CY. Expression and function of opsin genes associated with phototaxis in Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2023; 79:4490-4500. [PMID: 37418556 DOI: 10.1002/ps.7651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Zeugodacus cucuribitae is a major agricultural pest that causes significant damage to varieties of plants. Vision plays a critical role in phototactic behavior of herbivorous insects. However, the effect of opsin on the phototactic behavior in Z. cucuribitae remains unknown. The aim of this research is to explore the key opsin genes that associate with phototaxis behavior of Z. cucurbitae. RESULTS Five opsin genes were identified and their expression patterns were analyzed. The relative expression levels of ZcRh1, ZcRh4 and ZcRh6 were highest in 4-day-old larvae, ZcRh2 and ZcRh3 were highest in 3rd-instar larvae and 5-day-old pupae, respectively. Furthermore, five opsin genes had the highest expression levels in compound eyes, followed by the antennae and head, whereas the lower occurred in other tissues. The expression of the long-wavelength-sensitive (LW) opsins first decreased and then increased under green light exposure. In contrast, the expression of ultraviolet-sensitive (UV) opsins first increased and then decreased with the duration of UV exposure. Silencing of LW opsin (dsZcRh1, dsZcRh2, and dsZcRh6) and UV opsin (dsZcRh3 and dsZcRh4) reduced the phototactic efficiency of Z. cucurbitae to green light by 52.27%, 60.72%, and 67.89%, and to UV light by 68.59% and 61.73%, respectively. CONCLUSION The results indicate that RNAi inhibited the expression of opsin, thereby inhibiting the phototaxis of Z. cucurbitae. This result provides theoretical support for the physical control of Z. cucurbitae and lays the foundation for further exploration of the mechanism of insect phototaxis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chun Yu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Wang Y, Fang G, Xu P, Gao B, Liu X, Qi X, Zhang G, Cao S, Li Z, Ren X, Wang H, Cao Y, Pereira R, Huang Y, Niu C, Zhan S. Behavioral and genomic divergence between a generalist and a specialist fly. Cell Rep 2022; 41:111654. [DOI: 10.1016/j.celrep.2022.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
|
7
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Guignard Q, Allison JD, Slippers B. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. BMC Ecol Evol 2022; 22:2. [PMID: 34996358 PMCID: PMC8739693 DOI: 10.1186/s12862-022-01960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Visual opsins are expressed in the compound eyes and ocelli of insects and enable light detection. Three distinct phylogenetic groups of visual opsins are found in insects, named long (LW), short (SW) and ultraviolet (UV) wavelength sensitive opsins. Recently, the LW group was found to be duplicated into the LW2b and the LW2a opsins. The expression of LW2b opsins is ocelli specific in some insects (e.g., bees, cricket, scorpion flies), but the gene was not found in other orders possessing three or less ocelli (e.g., dragonflies, beetles, moths, bugs). In flies, two LW2b homologs have been characterised, with one expressed in the ocelli and the other in the compound eyes. To date, it remains unclear which evolutionary forces have driven gains and losses of LW opsins in insects. Here we take advantage of the recent rapid increase in available sequence data (i.e., from insect genomes, targeted PCR amplification, RNAseq) to characterize the phylogenetic relationships of 1000 opsin sequences in 18 orders of Insects. The resulting phylogeny discriminates between four main groups of opsins, and onto this phylogeny we mapped relevant morphological and life history traits. Results Our results demonstrate a conserved LW2b opsin only present in insects with three ocelli. Only two groups (Brachycera and Odonata) possess more than one LW2b opsin, likely linked to their life history. In flies, we hypothesize that the duplication of the LW2b opsin occurred after the transition from aquatic to terrestrial larvae. During this transition, higher flies (Brachycera) lost a copy of the LW2a opsin, still expressed and duplicated in the compound eyes of lower flies (Nematocera). In higher flies, the LW2b opsin has been duplicated and expressed in the compound eyes while the ocelli and the LW2b opsin were lost in lower flies. In dragonflies, specialisation of flight capabilities likely drove the diversification of the LW2b visual opsins. Conclusion The presence of the LW2b opsin in insects possessing three ocelli suggests a role in specific flight capabilities (e.g., stationary flight). This study provides the most complete view of the evolution of visual opsin genes in insects yet, and provides new insight into the influence of ocelli and life history traits on opsin evolution in insects. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01960-8.
Collapse
Affiliation(s)
- Quentin Guignard
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Jeremy D Allison
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.,Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street E, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
9
|
Guo FZ, Ning SY, Feng JN, Liu B, He XH. Ultrastructure and morphology of the compound eyes of the predatory bug Montandoniola moraguesi (Insecta: Hemiptera: Anthocoridae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101030. [PMID: 33578074 DOI: 10.1016/j.asd.2021.101030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The morphology and ultrastructure of the compound eye of the predatory bug, Montandoniola moraguesi (Puton, 1986) was investigated using scanning and transmission electron microscopy. Its compound eyes, which contain ∼195 ommatidia per eye, have the following characteristics: each ommatidium possesses a laminated corneal lens measuring ∼9 μm in diameter and ∼7 μm in thickness, a tetrapartite eucone crystalline cone, which is approximately 5.5 μm long, like a dumbbell with the distal end larger than the proximal end, eight clustered retinula cells ∼25.6 μm in length, two primary pigment cells and eight secondary primary pigment cells. The rhabdomeres of the eight retinula cells form a circular, tiered rhabdom of two elongated and six peripheral retinula cells. The rhabdomeres of cells R7 and R8 are distributed along the basolateral surface of the cone and form a centrally-fused rhabdom that spans nearly the full length of the ommatidium. The microvilli of the peripheral rhabdom (R1-R6) are radially arranged and form a bilobed, V-like shape in the central rhabdom. Based on the similarity of the compound eye of M. moraguesi to the eyes of other predatory insect species, the evolution and function of eyes in predators are briefly discussed.
Collapse
Affiliation(s)
- Fu-Zhen Guo
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Ying Ning
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Ji-Nian Feng
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Hua He
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Wu M, Bao R, Friedrich M. Evolutionary conservation of opsin gene expression patterns in the compound eyes of darkling beetles. Dev Genes Evol 2020; 230:339-345. [DOI: 10.1007/s00427-020-00669-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/21/2020] [Indexed: 01/07/2023]
|
11
|
Anatomy of the stemmata in the Photuris firefly larva. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:151-161. [PMID: 30649587 PMCID: PMC6394516 DOI: 10.1007/s00359-018-01312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 11/26/2022]
Abstract
Fireflies (Coleoptera: Lampyridae) have distinct visual systems at different stages of development. Larvae have stemmata and adults have compound eyes. Adults use compound eyes to mediate photic communication during courtship. Larvae do not manifest this behavior, yet they are bioluminescent. We investigated the structure of stemmata in Photuris firefly larvae to identify anatomical substrates (i.e., rhabdomeres) conferring visual function. Stemmata were located bilaterally on the antero-lateral surfaces of the head. Beneath the ~ 130 µm diameter lens, we identified a pigmented eye-cup. At its widest point, the eye-cup was ~ 150 µm in diameter. The optic nerve exited the eye-cup opposite the lens. Two distinct regions, asymmetric in size and devoid of pigmentation, were characterized in stemmata cross-sections. We refer to these regions as lobes. Each lobe contained a rhabdom of a radial network of rhabdomeres. Pairs of rhabdomeres formed interdigitating microvilli contributed from neighboring photoreceptor cell bodies. The optic nerve contained 88 axons separable into two populations based on size. The number of axons in the optic nerve together with distinct rhabdoms suggests these structures were formed from ‘fusion stemmata.’ This structural specialization provides an anatomical substrate for future studies of visually mediated behaviors in Photuris larvae.
Collapse
|
12
|
Fischer S, Lu Z, Meinertzhagen IA. Three-dimensional ultrastructural organization of the ommatidium of the minute parasitoid wasp Trichogramma evanescens. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 48:35-48. [PMID: 30605733 DOI: 10.1016/j.asd.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Existing information on insect compound eyes is mainly limited to two-dimensional information derived from histological or ultrathin sections. These allow a basic description of eye morphology, but are limited in z-axis resolution because of the section thickness or intervals between sections, so that accurate volumetric information cannot be generated. Here we use serial-sectioning transmission electron microscopy to present a 3-D reconstruction at ultrastructural level of a complete ommatidium of a miniaturized insect compound eye. Besides the general presentation of the three dimensional arrangement of the different cell types within the ommatidium, the reconstruction allowed volumetric measurements and numerical analyses to be undertaken, revealing new insights into the number, size and distribution of cell organelles in insect ommatidia. Morphological features that can be related to miniaturization, namely the dimensions and displacement of nuclei, reduction of average pigment granule volume and loss of pigment granules in the terminals of the cone cells, the impact of metabolic activity of cell types on miniaturization, as well as maintenance of rhabdomere volume and limits to its miniaturization, are all discussed.
Collapse
Affiliation(s)
- Stefan Fischer
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany; Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Chen P, Matsushita A, Wakakuwa M, Arikawa K. Immunolocalization suggests a role of the histamine‐gated chloride channel PxHCLB in spectral opponent processing in butterfly photoreceptors. J Comp Neurol 2018; 527:753-766. [DOI: 10.1002/cne.24558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Pei‐Ju Chen
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Atsuko Matsushita
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Motohiro Wakakuwa
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of BiosystemsSOKENDAI (The Graduate University for Advanced Studies) Hayama Japan
| |
Collapse
|
14
|
Pirih P, Ilić M, Rudolf J, Arikawa K, Stavenga DG, Belušič G. The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:639-651. [PMID: 29869100 PMCID: PMC6028894 DOI: 10.1007/s00359-018-1267-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
Abstract
The palm borer moth Paysandisia archon (Burmeister, 1880) (fam. Castniidae) is a large, diurnally active palm pest. Its compound eyes consist of ~ 20,000 ommatidia and have apposition optics with interommatidial angles below 1°. The ommatidia contain nine photoreceptor cells and appear structurally similar to those in nymphalid butterflies. Two morphological ommatidial types were identified. Using the butterfly numbering scheme, in type I ommatidia, the distal rhabdom consists exclusively of the rhabdomeres of photoreceptors R1–2; the medial rhabdom has contributions from R1–8. The rhabdom in type II ommatidia is distally split into two sub-rhabdoms, with contributions from photoreceptors R2, R3, R5, R6 and R1, R4, R7, R8, respectively; medially, only R3–8 and not R1–2 contribute to the fused rhabdom. In both types, the pigmented bilobed photoreceptors R9 contribute to the rhabdom basally. Their nuclei reside in one of the lobes. Upon light adaptation, in both ommatidial types, the rhabdoms secede from the crystalline cones and pigment granules invade the gap. Intracellular recordings identified four photoreceptor classes with peak sensitivities in the ultraviolet, blue, green and orange wavelength regions (at 360, 465, 550, 580 nm, respectively). We discuss the eye morphology and optics, the photoreceptor spectral sensitivities, and the adaptation to daytime activity from a phylogenetic perspective.
Collapse
Affiliation(s)
- Primož Pirih
- Department of Evolutionary Studies of Biosystems, SOKENDAI The Graduate University for Advanced Studies, Shonan International Village, Hayama, 240-0115, Kanagawa, Japan. .,Department of Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands.
| | - Marko Ilić
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Jerneja Rudolf
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006, Bergen, Norway
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI The Graduate University for Advanced Studies, Shonan International Village, Hayama, 240-0115, Kanagawa, Japan
| | - Doekele G Stavenga
- Department of Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL, 9747AG, Groningen, The Netherlands
| | - Gregor Belušič
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
15
|
Arikawa K, Iwanaga T, Wakakuwa M, Kinoshita M. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes. Front Neural Circuits 2017; 11:96. [PMID: 29238294 PMCID: PMC5712540 DOI: 10.3389/fncir.2017.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.
Collapse
Affiliation(s)
- Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Tomoyuki Iwanaga
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | - Motohiro Wakakuwa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
16
|
Perry M, Konstantinides N, Pinto-Teixeira F, Desplan C. Generation and Evolution of Neural Cell Types and Circuits: Insights from the Drosophila Visual System. Annu Rev Genet 2017; 51:501-527. [PMID: 28961025 DOI: 10.1146/annurev-genet-120215-035312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the Drosophila visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA;
| | | | - Filipe Pinto-Teixeira
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Arikawa K. The eyes and vision of butterflies. J Physiol 2017; 595:5457-5464. [PMID: 28332207 DOI: 10.1113/jp273917] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Butterflies use colour vision when searching for flowers. Unlike the trichromatic retinas of humans (blue, green and red cones; plus rods) and honeybees (ultraviolet, blue and green photoreceptors), butterfly retinas typically have six or more photoreceptor classes with distinct spectral sensitivities. The eyes of the Japanese yellow swallowtail (Papilio xuthus) contain ultraviolet, violet, blue, green, red and broad-band receptors, with each ommatidium housing nine photoreceptor cells in one of three fixed combinations. The Papilio eye is thus a random patchwork of three types of spectrally heterogeneous ommatidia. To determine whether Papilio use all of their receptors to see colours, we measured their ability to discriminate monochromatic lights of slightly different wavelengths. We found that Papilio can detect differences as small as 1-2 nm in three wavelength regions, rivalling human performance. We then used mathematical modelling to infer which photoreceptors are involved in wavelength discrimination. Our simulation indicated that the Papilio vision is tetrachromatic, employing the ultraviolet, blue, green and red receptors. The random array of three ommatidial types is a common feature in butterflies. To address the question of how the spectrally complex eyes of butterflies evolved, we studied their developmental process. We have found that the development of butterfly eyes shares its molecular logic with that of Drosophila: the three-way stochastic expression pattern of the transcription factor Spineless determines the fate of ommatidia, creating the random array in Papilio.
Collapse
|
18
|
Jia LP, Liang AP. An apposition compound eye adapted for nocturnal vision in the moth midge Clogmia albipunctata (Williston) (Diptera: Psychodidae). JOURNAL OF INSECT PHYSIOLOGY 2017; 98:188-198. [PMID: 28109903 DOI: 10.1016/j.jinsphys.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Morphology and anatomy, dark/light adaptational changes and optics of the compound eyes of the nocturnal moth midge Clogmia albipunctata (Williston) are studied. Its apposition type of eye consists of approximately 260 well-separated ommatidia. Each ommatidium features a biconvex corneal lens covered by corneal nipples measuring around 17nm in height; a crystalline cone of the acone type; and an open (laterally fused) rhabdom formed by eight retinular cells (R1-R8). The corneal lens, whose biological significance is addressed, is composed of a thick yellow-coloured inner lens unit (ILU) surrounded by a thin, colourless outer lens unit (OLU). We identified two types of ommatidia: dorsally located T-type ommatidia and ventrally located P-type ommatidia. In the T-type ommatidia, the rhabdomeres of the retinular cells R7 and R8 are centrally located and are arranged in tandem with R7 above R8. In comparison, in the P-type ommatidia, only the R8 rhabdomere is central, whereas the R7 rhabdomere locates in the peripheral ring. Above the distal tip of the rhabdom, the crystalline cone and the PPCs form an aperture that dynamically changes its size under dark/light conditions, thus modulating the amount of light that reaches the photoreceptive layer. The Clogmia albipunctata eye has a low F-number of 1.2, a high interommatidial angle of 11° and a large eye parameter of 4.6μm·rad. The eye is characterized by relatively poor spatial resolution, but exhibits high absolute sensitivity.
Collapse
Affiliation(s)
- Lei-Po Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ai-Ping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, Mitchell RF, Waterhouse RM, Ahn SJ, Arsala D, Benoit JB, Blackmon H, Bledsoe T, Bowsher JH, Busch A, Calla B, Chao H, Childers AK, Childers C, Clarke DJ, Cohen L, Demuth JP, Dinh H, Doddapaneni H, Dolan A, Duan JJ, Dugan S, Friedrich M, Glastad KM, Goodisman MAD, Haddad S, Han Y, Hughes DST, Ioannidis P, Johnston JS, Jones JW, Kuhn LA, Lance DR, Lee CY, Lee SL, Lin H, Lynch JA, Moczek AP, Murali SC, Muzny DM, Nelson DR, Palli SR, Panfilio KA, Pers D, Poelchau MF, Quan H, Qu J, Ray AM, Rinehart JP, Robertson HM, Roehrdanz R, Rosendale AJ, Shin S, Silva C, Torson AS, Jentzsch IMV, Werren JH, Worley KC, Yocum G, Zdobnov EM, Gibbs RA, Richards S. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol 2016; 17:227. [PMID: 27832824 PMCID: PMC5105290 DOI: 10.1186/s13059-016-1088-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. RESULTS The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. CONCLUSIONS Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
Collapse
Affiliation(s)
- Duane D. McKenna
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
- Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152 USA
| | - Erin D. Scully
- USDA, Agricultural Research Service, Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Manhattan, KS 66502 USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Scott M. Geib
- USDA, Agricultural Research Service, Daniel K Inouye US Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, Hilo, HI 96720 USA
| | - Robert F. Mitchell
- Center for Insect Science and Department of Neuroscience, University of Arizona, Tucson, AZ 85721 USA
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901 USA
| | - Robert M. Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
- The Massachusetts Institute of Technology and The Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Heath Blackmon
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019 USA
| | - Tiffany Bledsoe
- Center for Insect Science and Department of Neuroscience, University of Arizona, Tucson, AZ 85721 USA
| | - Julia H. Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - André Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Bernarda Calla
- USDA, Agricultural Research Service, Daniel K Inouye US Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Protection Research Unit, Hilo, HI 96720 USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Anna K. Childers
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Christopher Childers
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Dave J. Clarke
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Lorna Cohen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jeffery P. Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019 USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Jian J. Duan
- USDA, Agricultural Research Service, Beneficial Insects Introduction Research, Newark, DE 19713 USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Karl M. Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | | | - Stephanie Haddad
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Daniel S. T. Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843 USA
| | - Jeffery W. Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Leslie A. Kuhn
- Department of Biochemistry and Molecular Biology, Department of Computers Science and Engineering, and Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - David R. Lance
- USDA, Animal and Plant Health Inspection Service, Plant Pest and Quarantine, Center for Plant Health Science and Technology, Otis Laboratory, Buzzards Bay, MA 02542 USA
| | - Chien-Yueh Lee
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617 Taiwan
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Han Lin
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617 Taiwan
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, Blomington, IN 47405 USA
| | - Shwetha C. Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - David R. Nelson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Subba R. Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546 USA
| | - Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, 50674 Germany
| | - Dan Pers
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Monica F. Poelchau
- USDA, Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Honghu Quan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Ann M. Ray
- Department of Biology, Xavier University, Cincinnati, OH 45207 USA
| | - Joseph P. Rinehart
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Richard Roehrdanz
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Andrew J. Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, 3700 Walker Ave., Memphis, TN 38152 USA
| | - Christian Silva
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Alex S. Torson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108 USA
| | | | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - George Yocum
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, Geneva, 1211 Switzerland
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
20
|
Anstead CA, Batterham P, Korhonen PK, Young ND, Hall RS, Bowles VM, Richards S, Scott MJ, Gasser RB. A blow to the fly — Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 2016; 34:605-620. [DOI: 10.1016/j.biotechadv.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/08/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
21
|
Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 2016; 535:280-4. [PMID: 27383790 PMCID: PMC4988338 DOI: 10.1038/nature18616] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, New York 10003, USA
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Giuseppe Saldi
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Lucy Huo
- Department of Biology, New York University, New York, New York 10003, USA
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0115, Japan
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Chen QX, Hua BZ. Ultrastructure and Morphology of Compound Eyes of the Scorpionfly Panorpa dubia (Insecta: Mecoptera: Panorpidae). PLoS One 2016; 11:e0156970. [PMID: 27258365 PMCID: PMC4892548 DOI: 10.1371/journal.pone.0156970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 11/18/2022] Open
Abstract
Mecoptera are unique in holometabolous insects in that their larvae have compound eyes. In the present study the cellular organisation and morphology of the compound eyes of adult individuals of the scorpionfly Panorpa dubia in Mecoptera were investigated by light, scanning electron, and transmission electron microscopy. The results showed that the compound eyes of adult P. dubia are of the apposition type, each eye comprising more than 1200 ommatidia. The ommatidium consists of a cornea, a crystalline cone made up of four cone cells, eight photoreceptors, two primary pigment cells, and 18 secondary pigment cells. The adult ommatidium has a fused rhabdom with eight photoreceptors. Seven photoreceptors extend from the proximal end of the crystalline cone to the basal matrix, whereas the eighth photoreceptor is shorter, extending from the middle level of the photoreceptor cluster to the basal matrix. The fused rhabdom is composed of the rhabdomeres of different photoreceptors at different levels. The adult ommatidia have the same cellular components as the larval ommatidia, but the tiering scheme is different.
Collapse
Affiliation(s)
- Qing-Xiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China
- Forestry College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bao-Zhen Hua
- State Key Laboratory of Crop Stress Biology for Arid Areas, Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
23
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Friedrich M, Cook T, Zelhof AC. Ancient default activators of terminal photoreceptor differentiation in the pancrustacean compound eye: the homeodomain transcription factors Otd and Pph13. CURRENT OPINION IN INSECT SCIENCE 2016; 13:33-42. [PMID: 27436551 PMCID: PMC5221501 DOI: 10.1016/j.cois.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 06/06/2023]
Abstract
The origin of the Drosophila compound eye predates the ancestor of Pancrustacea, the arthropod clade that includes insects and Crustaceans. Recent studies in emerging model systems for pancrustacean development-the red flour beetle Tribolium castaneum and water flea Daphnia pulex-have begun to shed light on the evolutionary conservation of transcriptional mechanisms found for the Drosophila compound eye. Here, we discuss the conserved roles of the transcription factors Otd and Pph13, which complement each other in two terminal events of photoreceptor differentiation: rhabdomere morphogenesis and transcriptional default activation of opsin gene expression. The synthesis of these data allows us to frame an evolutionary developmental model of the earliest events that generated the wavelength-specific photoreceptor subtypes of pancrustacean compound eyes.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tiffany Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Kawasaki M, Kinoshita M, Weckström M, Arikawa K. Difference in dynamic properties of photoreceptors in a butterfly, Papilio xuthus: possible segregation of motion and color processing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1115-23. [DOI: 10.1007/s00359-015-1039-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/30/2022]
|
26
|
Wernet MF, Perry MW, Desplan C. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 2015; 31:316-28. [PMID: 26025917 PMCID: PMC4458154 DOI: 10.1016/j.tig.2015.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.
Collapse
Affiliation(s)
- Mathias F Wernet
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates
| | - Michael W Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- New York University Abu Dhabi, Abu Dhabi, 129188 Saadiyat Island, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
27
|
Hempel de Ibarra N, Vorobyev M, Menzel R. Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:411-33. [PMID: 24828676 PMCID: PMC4035557 DOI: 10.1007/s00359-014-0915-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022]
Abstract
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Collapse
Affiliation(s)
- N Hempel de Ibarra
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK,
| | | | | |
Collapse
|
28
|
Jia LP, Liang AP. An apposition-like compound eye with a layered rhabdom in the small diving beetleAgabus japonicus(Coleoptera, Dytiscidae). J Morphol 2014; 275:1273-83. [DOI: 10.1002/jmor.20300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/17/2014] [Accepted: 05/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Lei-Po Jia
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology, Chinese Academy of Sciences; Beijing 100101 People's Republic of China
- College of Life Science; University of Chinese Academy of Sciences; Beijing 100101 People's Republic of China
| | - Ai-Ping Liang
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology, Chinese Academy of Sciences; Beijing 100101 People's Republic of China
| |
Collapse
|
29
|
Sztarker J, Tomsic D. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crabNeohelice granulata. J Comp Neurol 2014; 522:3177-93. [DOI: 10.1002/cne.23589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Julieta Sztarker
- Laboratorio de Neurobiología de la Memoria; Dpto. Fisiología; Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (IFIBYNE- CONICET); Buenos Aires 1428 Argentina
| | - Daniel Tomsic
- Laboratorio de Neurobiología de la Memoria; Dpto. Fisiología; Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires (IFIBYNE- CONICET); Buenos Aires 1428 Argentina
| |
Collapse
|
30
|
Alkaladi A, Zeil J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J Comp Neurol 2014; 522:1264-83. [DOI: 10.1002/cne.23472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Alkaladi
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| | - Jochen Zeil
- ARC Centre of Excellence in Vision Science, Research School of Biology; Australian National University; Canberra Australia
| |
Collapse
|
31
|
Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:527-36. [DOI: 10.1007/s00359-014-0892-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
32
|
Fischer S, Meyer-Rochow VB, Müller CHG. Compound Eye Miniaturization in Lepidoptera: a comparative morphological analysis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Stefan Fischer
- Department of Psychology and Neuroscience; Life Sciences Centre; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
- Faculty of Engineering and Science; Jacobs University Bremen; Campus Ring 1 28759 Bremen Germany
| | - Victor Benno Meyer-Rochow
- Department of Psychology and Neuroscience; Life Sciences Centre; Dalhousie University; Halifax Nova Scotia Canada B3H 4R2
- Department of Biology; Oulu University; P.O.Box 3000 SF 90014 Oulu Finland
| | - Carsten H. G. Müller
- Department Cytology and Evolutionary Biology; Zoological Institute and Museum; Ernst-Moritz-Arndt-University Greifswald; Soldmannstrasse 23 17487 Greifswald Germany
| |
Collapse
|
33
|
Chen Q, Wei Y, Hua B. Fine structure of the ommatidia of the short-faced scorpionflyPanorpodes kuandianensis(Mecoptera: Panorpodidae). Microsc Res Tech 2013; 76:862-9. [DOI: 10.1002/jemt.22240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Qingxiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of the Education Ministry, Entomological Museum; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Yao Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of the Education Ministry, Entomological Museum; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Baozhen Hua
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of the Education Ministry, Entomological Museum; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
34
|
Neurons innervating the lamina in the butterfly, Papilio xuthus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:341-51. [PMID: 23407865 DOI: 10.1007/s00359-013-0798-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 11/27/2022]
Abstract
The butterfly Papilio xuthus has compound eyes with three types of ommatidia. Each type houses nine spectrally heterogeneous photoreceptors (R1-R9) that are divided into six spectral classes: ultraviolet, violet, blue, green, red, and broad-band. Analysis of color discrimination has shown that P. xuthus uses the ultraviolet, blue, green, and red receptors for foraging. The ultraviolet and blue receptors are long visual fibers terminating in the medulla, whereas the green and red receptors are short visual fibers terminating in the lamina. This suggests that processing of wavelength information begins in the lamina in P. xuthus, unlike in flies. To establish the anatomical basis of color discrimination mechanisms, we examined neurons innervating the lamina by injecting neurobiotin into this neuropil. We found that in addition to photoreceptors and lamina monopolar cells, three distinct groups of cells project fibers into the lamina. Their cell bodies are located (1) at the anterior rim of the medulla, (2) between the proximal surface of the medulla and lobula plate, and (3) in the medulla cell body rind. Neurobiotin injection also labeled distinct terminals in medulla layers 1, 2, 3, 4 and 5. Terminals in layer 4 belong to the long visual fibers (R1, 2 and 9), while arbors in layers 1, 2 and 3 probably correspond to terminals of three subtypes of lamina monopolar cells, respectively. Immunocytochemistry coupled with neurobiotin injection revealed their transmitter candidates; neurons in (1) and a subset of neurons in (2) are immunoreactive to anti-serotonin and anti-γ-aminobutyric acid, respectively.
Collapse
|
35
|
Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M. Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 2012; 12:163. [PMID: 22935102 PMCID: PMC3502269 DOI: 10.1186/1471-2148-12-163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/24/2012] [Indexed: 11/28/2022] Open
Abstract
Background Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. Results Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. Conclusions Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a functional explanation. From the opsin phylogeny, we conclude that gene duplications, which permitted differential opsin expression in insect ocelli and compound eyes, occurred independently in several insect lineages and are recent compared to the origin of the eyes themselves.
Collapse
Affiliation(s)
- Miriam J Henze
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Chen Q, Wei Y, Hua B. Ultrastructural comparison of the compound eyes of Sinopanorpa and Panorpa (Mecoptera: Panorpidae). Micron 2012; 43:893-901. [DOI: 10.1016/j.micron.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
37
|
Matsushita A, Awata H, Wakakuwa M, Takemura SY, Arikawa K. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis. Proc Biol Sci 2012; 279:3482-90. [PMID: 22628477 DOI: 10.1098/rspb.2012.0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The eye of the Glacial Apollo butterfly, Parnassius glacialis, a 'living fossil' species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.
Collapse
Affiliation(s)
- Atsuko Matsushita
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Shonan Village, Hayama 2400193, Japan
| | | | | | | | | |
Collapse
|