1
|
Bin Li, Yan R, Liu X, Meng Z, Meng P, Wang Y, Huang Y. CircRNAs Biogenesis, Functions, and Its Research Progress in Aquaculture. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Zhong H, Guo Z, Xiao J, Zhang H, Luo Y, Liang J. Comprehensive Characterization of Circular RNAs in Ovary and Testis From Nile Tilapia. Front Vet Sci 2022; 9:847681. [PMID: 35464370 PMCID: PMC9019548 DOI: 10.3389/fvets.2022.847681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is an endogenous biomolecule in eukaryotes. It has tissue- and cell-specific expression patterns and can act as a microRNA sponge or competitive endogenous RNA. Although circRNA has been found in several species in recent years, the expression profiles in fish gonad are still not fully understood. We detected the expression of circRNA in the ovary, testis, and sex-changed gonad of tilapia by high-throughput deep sequencing, and circRNA-specific computing tools. A total of 20,607 circRNAs were obtained, of which 141 were differentially expressed in the testis and ovary. Among these circRNAs, 135 circRNAs were upregulated and 6 circRNAs were downregulated in female fish. In addition, GO annotation and KEGG pathway analysis of the host genes of circRNAs indicated that these host genes were mainly involved in adherens junction, androgen production, and reproductive development, such as ZP3, PLC, delta 4a, ARHGEF10, and HSD17b3. It is worth noting that we found that circRNAs in tilapia gonads have abundant miRNA-binding sites. Among them, 935 circRNAs have a regulatory effect on miR-212, 856 circRNAs have a regulatory effect on miR-200b-3p, and 529 circRNAs have a regulatory effect on miR-200b-5p. Thus, our findings provide a new evidence for circRNA–miRNA networks in the gonads in tilapia.
Collapse
Affiliation(s)
- Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhongbao Guo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
- *Correspondence: Jun Xiao
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, China
| | - Yongju Luo
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Junneng Liang
- Guangxi Tilapia Genetic Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
3
|
Huo D, Sun L, Sun J, Lin C, Liu S, Zhang L, Yang H. Emerging roles of circRNAs in regulating thermal and hypoxic stresses in Apostichopus japonicus (Echinodermata: Holothuroidea). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112994. [PMID: 34839139 DOI: 10.1016/j.ecoenv.2021.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Some sea cucumbers are economically and ecologically important, but they are threatened by thermal and hypoxic stress in changing oceanographic conditions. We construct circRNAs profiles, reveal circRNAs characters, and illustrate the potential regulatory roles of circRNAs in one commercially important species of sea cucumber, Apostichopus japonicus. Reads are distributed in intergenic (44.14%), exonic (48.26%) and intronic (7.60%) regions of the genome. A total of 1684 circRNAs were identified, and the most common spliced length is 269 nt in the present study. In three treatments (HT [thermal stress], LO [hypoxic stress], and HL [combined thermal and hypoxic stress]), 24, 27 and 27 differentially expressed (DE) circRNAs were identified, respectively. Five novel DE-circRNAs commonly occur in these treatments (novel_circ_0003311, novel_circ_0000229, novel_circ_0003944, novel_circ_0001458 and novel_circ_0000707), and based on them, potential circRNA-miRNA binding pairs were predicted. Sanger sequencing, RNase R treatment experiment and qPCR validation identified the accuracy of the circRNAs. Key circRNAs identified in the present study were covalently closed and were more stable under RNase R treatment than linear RNAs. Based on function analysis, circRNAs could regulate metabolic process, signal transduction, and ion responses in A. japonicus when exposed to thermal and hypoxic stress, and 'regulation of response to stimulus' is a common gene ontology (GO) term that is significantly enriched in each treatment; GO terms for 'DNA' and 'stress' are commonly enriched in heat-related treatments (HT and HL); and GO terms for 'protein' are commonly enriched in hypoxia-related treatments (LO and HL). When environmentally stressed, 'metabolism,' 'transport and catabolism,' 'membrane transport,' and 'signal transduction' were significantly responded in sea cucumber based on KEGG analysis. We provide insights into circRNA functions in stress regulation and lay a foundation for invertebrate circRNA research.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Liu L, Chen Y, Diao J, Luo L, Gao Z. Identification and Characterization of Novel circRNAs Involved in Muscle Growth of Blunt Snout Bream ( Megalobrama amblycephala). Int J Mol Sci 2021; 22:ijms221810056. [PMID: 34576220 PMCID: PMC8467684 DOI: 10.3390/ijms221810056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in the growth of animals. However, the regulatory mechanism of circRNAs on fish muscle growth is still unclear. In this study, we performed whole transcriptome analysis of skeletal muscles from two populations with different growth rates (fast-growing and slow-growing) of blunt snout bream (Megalobrama amblycephala), an important fish species for aquaculture. The selected circRNAs were validated by qPCR and Sanger sequencing. Pairs of circRNA–miRNA–mRNA networks were constructed with the predicted differentially expressed (DE) pairs, which revealed regulatory roles in muscle myogenesis and hypertrophy. As a result, a total of 445 circRNAs were identified, including 42 DE circRNAs between fast-growing (FG) and slow-growing (SG) groups. Many of these DE circRNAs were related with aminoglycan biosynthetic and metabolic processes, cytokinetic processes, and the adherens junction pathway. The functional prediction results showed that novel_circ_0001608 and novel_circ_0002886, competing to bind with dre-miR-153b-5p and dre-miR-124-6-5p, might act as competing endogenous RNAs (ceRNAs) to control MamblycephalaGene14755 (pik3r1) and MamblycephalaGene10444 (apip) level, respectively, thus playing an important regulatory role in muscle growth. Overall, these results will not only help us to further understand the novel RNA transcripts in M. amblycephala, but also provide new clues to investigate the potential mechanism of circRNAs regulating fish growth and muscle development.
Collapse
Affiliation(s)
- Lifang Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yulong Chen
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinghan Diao
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lifei Luo
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: (L.L.); or (Z.G.); Tel.: +86-2787282113 (Z.G.); Fax: +86-2787282114 (Z.G.)
| | - Zexia Gao
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Y.C.); (J.D.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: (L.L.); or (Z.G.); Tel.: +86-2787282113 (Z.G.); Fax: +86-2787282114 (Z.G.)
| |
Collapse
|
5
|
seekCRIT: Detecting and characterizing differentially expressed circular RNAs using high-throughput sequencing data. PLoS Comput Biol 2020; 16:e1008338. [PMID: 33079938 PMCID: PMC7598922 DOI: 10.1371/journal.pcbi.1008338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, researchers have discovered a special form of alternative splicing that produces a circular form of RNA. Although these circular RNAs (circRNAs) have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of current studies has been on the tissue-specific circRNAs that exist only in one tissue but not in other tissues or on the disease-specific circRNAs that exist in certain disease conditions, such as cancer, but not under normal conditions. This approach was conducted in the relative absence of methods that analyze a group of common circRNAs that exist in both conditions, but are more abundant in one condition relative to another (differentially expressed). Studies of differentially expressed circRNAs (DECs) between two conditions would serve as a significant first step in filling this void. Here, we introduce a novel computational tool, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the DECs between two conditions from high-throughput sequencing data. Using rat retina RNA-seq data from ischemic and normal conditions, we show that over 74% of identifiable circRNAs are expressed in both conditions and over 40 circRNAs are differentially expressed between two conditions. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient approach to detect DECs using rRNA depleted RNA-seq data. seekCRIT is freely downloadable at https://github.com/UofLBioinformatics/seekCRIT. The source code is licensed under the MIT License. seekCRIT is developed and tested on Linux CentOS-7. The focus of circRNA studies has been on condition-specific circRNAs, however, there are situations in which circRNAs exist in both conditions with different abundance. Here, we introduce a new and robust analytic software, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the differentially expressed circRNAs (DECs) between two conditions from high-throughput sequencing data. seekCRIT provides a straightforward normalized quantification of circRNAs and statistical measures by adapting a junction-count-based estimation approach. Using publicly available ribosomal RNA depleted RNA-seq data and our own rat retina RNA-seq data, we show that seekCRIT can efficiently detect circRNAs and identify DECs. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient software to detect DECs using rRNA depleted RNA-seq data.
Collapse
|
6
|
Xie S, Li M, Chen Y, Liu Y, Ma L, Sun X, Sun Y, Gao R, Huang T. Identification of circular RNAs in the ovarian follicles of Meishan and Duroc sows during the follicular phase. J Ovarian Res 2020; 13:104. [PMID: 32917247 PMCID: PMC7488758 DOI: 10.1186/s13048-020-00709-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs that play an important role in growth and development by regulating gene expression and participating in a variety of biological processes. However, the role of circRNAs in porcine follicles remains unclear. Therefore, this study examined middle-sized ovarian follicles obtained from Meishan and Duroc sows at day 4 of the follicular phase. High-throughput RNA sequencing (RNA-seq) was utilized to construct circRNAs, and differential expression was identified. The findings were validated using reverse transcription PCR (RT-PCR) and DNA sequencing, GO and KEGG analyses were performed, and potential miRNA targets were identified. The RNA-seq identified a total of 15,866 circRNAs, with 244 differentially expressed in the Meishan relative to the Duroc (111 up-regulated and 133 down-regulated). The RT-PCR finding confirmed the RNA-seq results, and quantitative real-time PCR (qPCR) analysis examining a subset of the circRNAs showed that they are resistant to RNase R digestion. Bioinformatics analysis (GO and KEGG) showed that the host genes associated with the differentially expressed circRNAs are involved in reproduction and follicular development signaling pathways. Furthermore, many of the circRNAs were found to interact with miRNAs that are associated with follicular development. This study presents a new perspective for studying circRNAs and provides a valuable resource for further examination into the potential roles of circRNAs in porcine follicular development.
Collapse
Affiliation(s)
- Su Xie
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Mengxun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China.,Key Laboratory of Animal Breeding and Reproduction of Minstry of Education,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yansen Chen
- University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Gembloux, Belgium
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Xiaomei Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Ruonan Gao
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi, 832000, China.
| |
Collapse
|
7
|
Shen Y, Liang W, Lin Y, Yang H, Chen X, Feng P, Zhang B, Zhu J, Zhang Y, Luo H. Single molecule real-time sequencing and RNA-seq unravel the role of long non-coding and circular RNA in the regulatory network during Nile tilapia (Oreochromis niloticus) infection with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 104:640-653. [PMID: 32544555 DOI: 10.1016/j.fsi.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The tilapia aquaculture industry is facing heavy economic losses due to Streptococcus agalactiae (S. agalactiae) infections. While progress has been made in past years, the lack of a high-quality tilapia genome and transcript annotations makes systematic and comprehensive exploration for a non-coding RNA regulatory network associated with the infection process unfeasible, and it stunts further research focused on disease defense and treatment. Herein, single molecular real time sequencing (SMRT-Seq) and RNA-seq data were utilized to generate a high-quality transcript annotation. In addition, Changes in mRNA and non-coding RNA expression were also analyzed during a S. agalactiae infection in tilapia. FINDINGS In total, 16.79 Gb of clean data were obtained by sequencing on six SMRT cells, with 712,294 inserts (326,645 full-length non-chimeric reads and 354,188 non-full-length reads). A total of 197,952 consensus transcripts were obtained. Additionally, 55,857 transcript sequences were acquired, with 12,297 previously annotated and 43,560 newly identified transcripts. To further examine the immune response in Oreochromis niloticus following a S. agalactiae infection, a total of 470.62 Gb of clean data was generated by sequencing a library containing 18 S. agalactiae infected tilapia samples. Of the identified genes, 9911 were newly exploited, of which 7102 were functional annotated. Furthermore, 7874 mRNAs, 1281 long non-coding RNAs (out of 21,860 long non-coding RNAs), and 61 circular RNAs (out of 1026 circular RNAs) were found to be differentially expressed during infection, with the 1026 circRNAs not previously identified in tilapia. Moreover, k-means clustering and WGCNA analyses revealed that the immune response of tilapia to a S. agalactiae infection can be divided into three stages: cytokines driven rapid immune response, energy metabolism promotion, and the production of lysosomes and phagosomes. During this response, the head kidney and spleen have synergistic effects, while maintaining independent characteristics. Finally, lncRNA-mRNA (trans and cis), lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks were constructed and revealed that non-coding RNA is involved in the regulation of immune-related genes. CONCLUSIONS This study generated a greatly-improved transcript annotation for tilapia using long-read PacBio sequencing technology, and revealed the presence of a regulatory network comprised of non-coding RNAs in Nile tilapia infected with S. agalactiae.
Collapse
Affiliation(s)
- Yudong Shen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Bin Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Jiajie Zhu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
8
|
Functions of Circular RNAs Involved in Animal Skeletal Muscle Development – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Circular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.
Collapse
|
9
|
Xiu Y, Jiang G, Zhou S, Diao J, Liu H, Su B, Li C. Identification of Potential Immune-Related circRNA-miRNA-mRNA Regulatory Network in Intestine of Paralichthys olivaceus During Edwardsiella tarda Infection. Front Genet 2019; 10:731. [PMID: 31475036 PMCID: PMC6702444 DOI: 10.3389/fgene.2019.00731] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Olive flounder (Paralichthys olivaceus) is an important economical flatfish in Japan, Korea, and China, but its production has been greatly threatened by disease outbreaks. In this research, we aimed to explore the immune responsive mechanism of P. olivaceus against Edwardsiella tarda infection by profiling the expression of circRNA, miRNA, and mRNA by RNA-seq and constructing a regulatory circular circRNA–miRNA–mRNA network. Illumina sequencing of samples from normal control (H0), 2 h (H2), 8 h (H8), and 12 h (H12) post-challenge was conducted. Differentially expressed (DE) circRNA (DE–circRNAs), miRNAs (DE–miRNAs), and mRNAs [differential expression genes (DEGs)] between challenge and control groups were identified, resulting in a total of 62 DE–circRNAs, 39 DE–miRNAs, and 3,011 DEGs. Based on the differentially expressed gene results, miRNA target interactions (circRNA–miRNA pairs and miRNA–mRNA pairs) were predicted by MiRanda software. Once these paired were combined, a preliminary circRNA–miRNA–mRNA network was generated with 198 circRNA–miRNA edges and 3,873 miRNA–mRNA edges, including 44 DE–circRNAs, 32 DE–miRNAs, and 1,774 DEGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to evaluate the function of the DEGs in this network, and we focused and identified two important intestinal immune pathways (herpes simplex infection and intestinal immune network for IgA production) that showed statistical significance between the challenge and control groups. Furthermore, three critical DEGs (nectin2, MHC II α-chain, and MHC II β-chain) were identified, mapped into the preliminary circRNA–miRNA–mRNA network, and new circRNA–miRNA–mRNA regulatory networks were constructed. In conclusion, we, for the first time, identified circRNA–miRNA–mRNA network from P. olivaceus in the pathogenesis of E. tarda and provided valuable resources for further analyses of the molecular mechanisms and signaling networks.
Collapse
Affiliation(s)
- Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Guangpeng Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Hongjun Liu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United Statess
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Zhao X, Duan X, Fu J, Shao Y, Zhang W, Guo M, Li C. Genome-Wide Identification of Circular RNAs Revealed the Dominant Intergenic Region Circularization Model in Apostichopus japonicus. Front Genet 2019; 10:603. [PMID: 31312211 PMCID: PMC6614181 DOI: 10.3389/fgene.2019.00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) were recently recognized to act as competing endogenous RNAs and play roles in gene expression regulation. Previous studies in humans and silkworms have shown that circRNAs take part in immune regulation. Here, we conducted coelomocyte circRNA sequencing to explore its immune functions in healthy and skin ulceration syndrome (SUS)-diseased sea cucumbers. A total of 3,592 circRNAs were identified in libraries with diversified circularization patterns compared with animal models. The common intron-pairing-driven circularization models are not popular in sea cucumber genome, which was replaced with intergenic region circularization. The accuracy of these identified circRNAs was further validated by Sanger sequencing and RNase R-treated assays. Expression profile analysis indicated that 117 circRNAs were upregulated and 144 circRNAs were downregulated in SUS-diseased condition, of which 71.6% were intergenic-type circRNAs. The interaction network of differentially expressed circRNAs and microRNAs (miRNAs) was constructed and showed that miR-2008 and miR-31, detected with significantly differential expression in SUS-affected samples in a previous study, were predicted to be regulated by 10 and 11 differentially expressed circRNAs with more than 10 binding sites, respectively. Moreover, seven circRNAs were further validated by quantitative real-time PCR, whose variation trends were consistent with circRNA sequencing. All our results supported that intergenic-type circRNAs might have a dominant function in Apostichopus japonicas immune response by acting as miRNA regulators.
Collapse
Affiliation(s)
- Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Xuemei Duan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Jianping Fu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Abstract
The genome-wide expression patterns of circular RNAs (circRNAs) are of increasing interest for their potential roles in normal cellular homeostasis, development, and disease. Thousands of circRNAs have been annotated from various species in recent years. Analysis of publically available or user-generated rRNA-depleted total RNA-seq data can be performed to uncover new circRNA expression trends. Here we provide a primer for profiling circRNAs from RNA-seq datasets. The description is tailored for the wet lab scientist with limited or no experience in analyzing RNA-seq data. We begin by describing how to access and interpret circRNA annotations. Next, we cover converting circRNA annotations into junction sequences that are used as scaffolds to align RNA-seq reads. Lastly, we visit quantifying circRNA expression trends from the alignment data.
Collapse
Affiliation(s)
- Daphne A Cooper
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| |
Collapse
|
12
|
Zhao T, Wang L, Li S, Xu M, Guan X, Zhou B. Characterization of conserved circular RNA in polyploid Gossypium
species and their ancestors. FEBS Lett 2017; 591:3660-3669. [DOI: 10.1002/1873-3468.12868] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| | - Luyao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| | - Sai Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| | - Min Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Cotton Hybrid R& D Engineering Center (the Ministry of Education); College of Agriculture; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
13
|
Shen Y, Guo X, Wang W. Identification and characterization of circular RNAs in zebrafish. FEBS Lett 2016; 591:213-220. [DOI: 10.1002/1873-3468.12500] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yudong Shen
- College of Fisheries; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei China
| | - Xianwu Guo
- Lab of Biotecnología Genómica; Centro de Biotecnología Genómica; Instituto de Politécnico Nacional; Reynosa Tamaulipas Mexico
| | - Weimin Wang
- College of Fisheries; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei China
| |
Collapse
|
14
|
Blasi B, Tafer H, Tesei D, Sterflinger K. From Glacier to Sauna: RNA-Seq of the Human Pathogen Black Fungus Exophiala dermatitidis under Varying Temperature Conditions Exhibits Common and Novel Fungal Response. PLoS One 2015; 10:e0127103. [PMID: 26061625 PMCID: PMC4463862 DOI: 10.1371/journal.pone.0127103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/10/2015] [Indexed: 01/28/2023] Open
Abstract
Exophiala dermatitidis (Wangiella dermatitidis) belongs to the group of the so-called black yeasts. Thanks in part to its thick and strongly melanized cell walls, E. dermatitidis is extremely tolerant to various kinds of stress, including extreme pH, temperature and desiccation. E. dermatitidis is also the agent responsible for various severe illnesses in humans, such as pneumonia and keratitis, and might lead to fatal brain infections. Due to its association with the human environment, its poly-extremophilic lifestyle and its pathogenicity in humans, E. dermatitidis has become an important model organism. In this study we present the functional analysis of the transcriptional response of the fungus at 1°C and 45°C, in comparison with that at 37°C, for two different exposition times, i.e. 1 hour and 1 week. At 1°C, E. dermatitidis uses a large repertoire of tools to acclimatize, such as lipid membrane fluidization, trehalose production or cytoskeleton rearrangement, which allows the fungus to remain metabolically active. At 45°C, the fungus drifts into a replicative state and increases the activity of the Golgi apparatus. As a novel finding, our study provides evidence that, apart from the protein coding genes, non-coding RNAs, circular RNAs as well as fusion-transcripts are differentially regulated and that the function of the fusion-transcripts can be related to the corresponding temperature condition. This work establishes that E. dermatitidis adapts to its environment by modulating coding and non-coding gene transcription levels and through the regulation of chimeric and circular RNAs.
Collapse
Affiliation(s)
- Barbara Blasi
- VIBT-Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hakim Tafer
- VIBT-Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Donatella Tesei
- VIBT-Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Katja Sterflinger
- VIBT-Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
15
|
Schüler A, Ghanbarian AT, Hurst LD. Purifying selection on splice-related motifs, not expression level nor RNA folding, explains nearly all constraint on human lincRNAs. Mol Biol Evol 2014; 31:3164-83. [PMID: 25158797 PMCID: PMC4245815 DOI: 10.1093/molbev/msu249] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection? Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in humans is splice related. Splice-related parameters explain much of the between-gene variation in evolutionary rate in humans. Expression rate is not a relevant predictor, although expression breadth is weakly so. In contrast to protein-coding RNAs, we observe no relationship between evolutionary rate and lincRNA stability. As in protein-coding genes, ESEs are especially abundant near splice junctions and evolve slower than non-ESE sequence equidistant from boundaries. Nearly all constraint in lincRNAs is at exon ends (N.B. the same is not witnessed in Drosophila). Although we cannot definitely answer the question as to why splice-related selection is so important, we find no evidence that splicing might enable the nonsense-mediated decay pathway to capture transcripts incorrectly processed by ribosomes. We find evidence consistent with the notion that splicing modifies the underlying chromatin through recruitment of splice-coupled chromatin modifiers, such as CHD1, which in turn might modulate neighbor gene activity. We conclude that most selection on human lincRNAs is splice mediated and suggest that the possibility of splice-chromatin coupling is worthy of further scrutiny.
Collapse
Affiliation(s)
- Andreas Schüler
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Avazeh T Ghanbarian
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
16
|
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA (NEW YORK, N.Y.) 2014; 20:1666-70. [PMID: 25234927 PMCID: PMC4201819 DOI: 10.1261/rna.043687.113] [Citation(s) in RCA: 1262] [Impact Index Per Article: 126.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/08/2014] [Indexed: 05/21/2023]
Abstract
Recently, several laboratories have reported thousands of circular RNAs (circRNAs) in animals. Numerous circRNAs are highly stable and have specific spatiotemporal expression patterns. Even though a function for circRNAs is unknown, these features make circRNAs an interesting class of RNAs as possible biomarkers and for further research. We developed a database and website, "circBase," where merged and unified data sets of circRNAs and the evidence supporting their expression can be accessed, downloaded, and browsed within the genomic context. circBase also provides scripts to identify known and novel circRNAs in sequencing data. The database is freely accessible through the web server at http://www.circbase.org/.
Collapse
Affiliation(s)
- Petar Glažar
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | |
Collapse
|