1
|
Donizetti A, Calicchio M, Romano MZ, Rosati L, Turco M, Carrese AM, del Gaudio R, Ferrandino I, Aniello F. Expression of Insl3 Protein in Adult Danio rerio. Int J Mol Sci 2024; 25:5419. [PMID: 38791457 PMCID: PMC11122137 DOI: 10.3390/ijms25105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a biomarker for Leydig cells in the testes of vertebrates, and it is principally involved in spermatogenesis through specific binding with the RXFP2 receptor. This study reports the insl3 gene transcript and the Insl3 prepropeptide expression in both non-reproductive and reproductive tissues of Danio rerio. An immunohistochemistry analysis shows that the hormone is present at a low level in the Leydig cells and germ cells at all stages of Danio rerio testis differentiation. Considering that the insl3 gene is transcribed in Leydig cells, our results highlight an autocrine and paracrine function of this hormone in the Danio rerio testis, adding new information on the Insl3 mode of action in reproduction. We also show that Insl3 and Rxfp2 belonging to Danio rerio and other vertebrate species share most of the amino acid residues involved in the ligand-receptor interaction and activation, suggesting a conserved mechanism of action during vertebrate evolution.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Mauro Calicchio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Anna Maria Carrese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Rosanna del Gaudio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| |
Collapse
|
2
|
Blasiak A, Gugula A, Gundlach AL, Olucha-Bordonau FE, Aniello F, Donizetti A. Relaxin ligand/receptor systems in the developing teleost fish brain: Conserved features with mammals and a platform to address neuropeptide system functions. Front Mol Neurosci 2022; 15:984524. [PMID: 36277494 PMCID: PMC9580368 DOI: 10.3389/fnmol.2022.984524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
The relaxins (RLNs) are a group of peptide hormone/neuromodulators that can regulate a wide range of physiological processes ranging from reproduction to brain function. All the family members have originated from a RLN3-like ancestor via different rounds of whole genome and gene specific duplications during vertebrate evolution. In mammals, including human, the divergence of the different family members and the emergence of new members led to the acquisition of specific functions for the various relaxin family peptide and associated receptor genes. In particular, in mammals, it was shown, that the role of RLN3 is correlated to the modulation of arousal, stress responses, emotion, social recognition, and other brain functions, positioning this gene/peptide as a potential therapeutic target for neuropsychiatric disorders. This review highlights the evolutionary conservation of relaxin family peptide and receptor gene expression and their associated brain neural circuits. In the zebrafish, the expression pattern of the different relaxin family members has specific features that are conserved in higher species, including a likely similar functional role for the ancestral RLN3-like gene. The use of different model organisms, particularly the zebrafish, to explore the diversification and conservation of relaxin family ligands and receptor systems, provides a relatively high-throughput platform to identify their specific conserved or differential neuromodulatory roles in higher species including human.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L. Gundlach
- Florey Department of Neuroscience and Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Aldo Donizetti,
| |
Collapse
|
3
|
D’Agostino S, Testa M, Aliperti V, Venditti M, Minucci S, Aniello F, Donizetti A. Expression pattern dysregulation of stress- and neuronal activity-related genes in response to prenatal stress paradigm in zebrafish larvae. Cell Stress Chaperones 2019; 24:1005-1012. [PMID: 31209726 PMCID: PMC6717227 DOI: 10.1007/s12192-019-01017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Maternal stress during pregnancy adversely affects developmental fetal programming. Glucocorticoid excess is one of those conditions that underlie the prenatal stress and can lead to many pathological disorders later in life. Beyond the obvious use of mammalian model organisms to uncover the different mechanisms at the basis of prenatal stress effects, zebrafish represents a complementary fruitful model for this research field. Here we demonstrated that the application of an experimental paradigm, which simulates prenatal stress by exposing embryos to cortisol excess, produced an alteration of gene expression pattern. In particular, the transcript level of hsd11b2, a gene involved in the cortisol catabolism, was affected in prenatally stressed larvae, even after many hours from the removal of cortisol excess. Interestingly, the expression pattern of c-fos, a marker gene of neural activity, was affected in prenatally stressed larvae even in response to a swirling and osmotic stress challenge. Our data corroborate the idea of zebrafish as a useful model organism to study prenatal stress effects on vertebrate development.
Collapse
Affiliation(s)
- Serena D’Agostino
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Martino Testa
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Sergio Minucci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| |
Collapse
|
4
|
Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019; 487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
The goal of this paper is to establish Japanese medaka (Oryzias latipes) as a model for relaxin family peptide research, particularly for studying the functions of RLN3 and INSL5, hormones playing roles in neuroendocrine regulation. Medaka, like other teleosts, retained duplicate copies of rln3, insl5 and their rxfp3/4-type receptors following fish-specific whole genome duplication (WGD) and paralogous copies of these genes may have sub-functionalised providing an intuitive model for teasing apart the pleiotropic roles of the corresponding genes in mammals. To this end, we provide experimental evidence for the expression of the relaxin family genes in medaka that had previously only been identified in-silico, confirm the gene structure of five of the ligand genes, characterise gene expression across multiple tissues and during embryonic development, perform in situ hybridization with anti-sense insl5a on embryos and in adult brain and intestinal samples, and compare these results to the data available in zebrafish. We find broad similarities but also some differences in the expression of relaxin family genes in zebrafish versus medaka, and find support for the hypothesis that the rln3a/rln3b and insl5a/insl5b paralogues have been subfunctionalized. Given that medaka has a suite of relaxin family genes more similar to other teleosts, and has retained the gene for rxfp4 (which is lost in zebrafish), our results suggest that O. latipes may be a good model for delineating the ancestral function of the relaxin family genes involved in neuroendocrine regulation.
Collapse
Affiliation(s)
- Hend Alnafea
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Brett Vahkal
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - C Kellie Zelmer
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Sergey Yegorov
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Sara V Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada; Department of Biology, The University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Venditti M, Donizetti A, Fiengo M, Fasano C, Santillo A, Aniello F, Minucci S. Temporal and spatial expression of insulin-like peptide (insl5a and insl5b) paralog genes during the embryogenesis of Danio rerio. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:33-40. [PMID: 29319231 DOI: 10.1002/jez.b.22787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/31/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
Relaxin (RLN) and insulin (INSL)-like peptides are member of the INSL/RLN superfamily, which are encoded by seven genes in humans and can activate the G-protein coupled receptor RXFP 1-4. These peptides evolved from a common ancestor, RLN3-like gene. Two rounds of whole genome duplication (WGD) in early vertebrate evolution, together with an additional WGD in the teleost lineage, caused an expansion of RLN genes set in the genome of Danio rerio. In particular, six RLN genes are present: a single copy of rln and insl3 genes, and two paralogs for the rln3 gene (rln3a and rln3b), and the insl5 gene (insl5a and insl5b). We have already reported the presence of rln3a and rln3b genes in the developing zebrafish brain, as well as the expression of rln gene in the developing zebrafish brain and extraneural territories, such as thyroid gland and pancreas. Here, we report for the first time the expression of the two parologs genes for insl5, insl5a, and insl5b in D. rerio embryonic development. The corresponding transcripts of both the paralogs are present in all embryonic stages analyzed by RT-qPCR. In situ hybridization analyses showed a restricted signal in intestinal cells and the pancreatic region at 72 hpf for insl5a, while at 96 hpf both genes are expressed in specific intestinal cells. Furthermore, in adult zebrafish intestine tissue, in situ hybridation experiments showed that insl5a transcript is specifically localized in the goblet cells, while insl5b transcript is in enteroendocrine cells. These data revealed a high degree of gene expression pattern conservation for such genes in vertebrate evolution.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Marcella Fiengo
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli, Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
6
|
Donizetti A, Fiengo M, Del Gaudio R, Iazzetti G, Pariante P, Minucci S, Aniello F. Expression pattern of zebrafish rxfp2 homologue genes during embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:605-13. [PMID: 26173401 DOI: 10.1002/jez.b.22637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/05/2015] [Indexed: 12/19/2022]
Abstract
RXFP2 is one of the 4 receptors for relaxin insulin-like peptides, in particular it binds with high affinity the INSL3 peptide. INSL3/RXFP2 pair is essential for testicular descent during placental mammalian development. The evolutionary history of this ligand/receptor pair has received much attention, since its function in vertebrate species lacking testicular descent, such as the fishes, remains elusive. Herein, we analyzed the expression pattern of three rxfp2 homologue genes in zebrafish embryonic development. For all the three rxfp2 genes (rxfp2a, rxfp2b, and rxfp2-like) we showed the presence of maternally derived transcripts. Later in the development, rxfp2a is only expressed at larval stage, whereas rxfp2b is expressed in all the analyzed stage with highest level in the larvae. The rxfp2-like gene is expressed in all the analyzed stage with a transcript level that increased starting at early pharyngula stage. The spatial localization analysis of rxfp2-like gene showed that it is expressed in many cell clusters in the developing brain. In addition, other rxfp2-like-expressing cells were identified in the retina and oral epithelium. This analysis provides new insights to elucidate the evolution of rxfp2 genes in vertebrate lineage and lays the foundations to study their role in vertebrate embryonic development.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marcella Fiengo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Giovanni Iazzetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo Pariante
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Sergio Minucci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|