1
|
Stewart JR, Hare KM, Thompson MB. Evolution of Placentation in Eugongylini (Squamata: Scincidae): Ontogeny of Extraembryonic Membranes in Oviparous and Viviparous Species of New Zealand. J Morphol 2024; 285:e70001. [PMID: 39415663 DOI: 10.1002/jmor.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
New Zealand scincid lizards, genus Oligosoma, represent a monophyletic radiation of a clade, Eugongylini, of species distributed geographically throughout the South Pacific with major radiations in Australia and New Caledonia. Viviparity has evolved independently on multiple occasions within these lineages. Studies of Australian species have revealed that placental specializations resulting in substantial placentotrophy have evolved in two lineages. The pattern of extraembryonic membrane development of oviparous species differs from viviparous species and identical placental architecture has evolved in both placentotrophic lineages. We analyzed extraembryonic membrane development in two New Zealand species, the sole oviparous species, Oligosoma suteri, and placental development of a representative viviparous species, Oligosoma polychroma, using histological techniques. We conclude that these two species share a basic pattern of extraembryonic membrane development with other squamates. Comparisons with Australian species indicate that morphogenesis of the yolk sac of O. suteri results in an elaborate structure previously known only in Oligosoma lichenigerum with a geographic distribution on Lord Howe Island and Norfolk Island. This finding supports a close relationship between these two taxa. We conclude also that the pattern of placental development of O. polychroma is identical to that of viviparous species of Australia. The terminal placental stage for each of these lineages includes a chorioallantoic placenta and an elaborate omphaloplacenta. This level of homoplasy in placental evolution is consistent with a hypothesis that selection favors regional differentiation of the maternal-embryonic interface and that the omphaloplacenta is an adaptation for histotrophic transport.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kelly M Hare
- Urban Wildlife Trust, Wellington/Hamilton, New Zealand
| | - Michael B Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
4
|
Fouks B, Harrison MC, Mikhailova AA, Marchal E, English S, Carruthers M, Jennings EC, Chiamaka EL, Frigard RA, Pippel M, Attardo GM, Benoit JB, Bornberg-Bauer E, Tobe SS. Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond. iScience 2023; 26:107832. [PMID: 37829199 PMCID: PMC10565785 DOI: 10.1016/j.isci.2023.107832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/13/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.
Collapse
Affiliation(s)
- Bertrand Fouks
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Alina A. Mikhailova
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Elisabeth Marchal
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ezemuoka L. Chiamaka
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronja A. Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Erich Bornberg-Bauer
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Stephen S. Tobe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Brusch GA, Le Galliard J, Viton R, Gavira RSB, Clobert J, Lourdais O. Reproducing in a changing world: combined effects of thermal conditions by day and night and of water constraints during pregnancy in a cold‐adapted ectotherm. OIKOS 2022. [DOI: 10.1111/oik.09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George A. Brusch
- Biological Sciences, California State Univ. San Marcos San Marcos CA USA
| | - Jean‐François Le Galliard
- Sorbonne Univ., CNRS, IRD, INRAe, Inst. d'Écologie et des Sciences de l'Environnement (IEES) Paris Cedex 5 France
- Ecole Normale Supérieure, PSL Univ., Dépt de Biologie, CNRS, UMS 3194, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
| | | | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321 Saint Girons France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| |
Collapse
|
6
|
Mika K, Whittington CM, McAllan BM, Lynch VJ. Gene expression phylogenies and ancestral transcriptome reconstruction resolves major transitions in the origins of pregnancy. eLife 2022; 11:e74297. [PMID: 35770963 PMCID: PMC9275820 DOI: 10.7554/elife.74297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Structural and physiological changes in the female reproductive system underlie the origins of pregnancy in multiple vertebrate lineages. In mammals, the glandular portion of the lower reproductive tract has transformed into a structure specialized for supporting fetal development. These specializations range from relatively simple maternal nutrient provisioning in egg-laying monotremes to an elaborate suite of traits that support intimate maternal-fetal interactions in Eutherians. Among these traits are the maternal decidua and fetal component of the placenta, but there is considerable uncertainty about how these structures evolved. Previously, we showed that changes in uterine gene expression contributes to several evolutionary innovations during the origins of pregnancy (Mika et al., 2021b). Here, we reconstruct the evolution of entire transcriptomes ('ancestral transcriptome reconstruction') and show that maternal gene expression profiles are correlated with degree of placental invasion. These results indicate that an epitheliochorial-like placenta evolved early in the mammalian stem-lineage and that the ancestor of Eutherians had a hemochorial placenta, and suggest maternal control of placental invasiveness. These data resolve major transitions in the evolution of pregnancy and indicate that ancestral transcriptome reconstruction can be used to study the function of ancestral cell, tissue, and organ systems.
Collapse
Affiliation(s)
- Katelyn Mika
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | | | | | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, State University of New YorkBuffalo,NewyorkUnited States
| |
Collapse
|
7
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
9
|
Watson CM, Cox CL. Elevation, oxygen, and the origins of viviparity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:457-469. [PMID: 34254734 DOI: 10.1002/jez.b.23072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Research focused on understanding the evolutionary factors that shape parity mode evolution among vertebrates have long focused on squamate reptiles (snakes and lizards), which contain all but one of the evolutionary transitions from oviparity to viviparity among extant amniotes. While most hypotheses have focused on the role of cool temperatures in favoring viviparity in thermoregulating snakes and lizards, there is a growing appreciation in the biogeographic literature for the importance of lower oxygen concentrations at high elevations for the evolution of parity mode. However, the physiological mechanisms underlying how hypoxia might reduce fitness, and how viviparity can alleviate this fitness decrement, has not been systematically evaluated. We qualitatively evaluated previous research on reproductive and developmental physiology, and found that (1) hypoxia can negatively affect fitness of squamate embryos, (2) oxygen availability in the circulatory system of adult lizards can be similar or greater than an egg, and (3) gravid females can possess adaptive phenotypic plasticity in response to hypoxia. These findings suggest that the impact of hypoxia on the development and physiology of oviparous and viviparous squamates would be a fruitful area of research for understanding the evolution of viviparity. To that end, we propose an integrative research program for studying hypoxia and the evolution of viviparity in squamates.
Collapse
Affiliation(s)
- Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, Texas, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| |
Collapse
|
10
|
Buddle AL, Van Dyke JU, Thompson MB, Simpfendorfer CA, Murphy CR, Dowland SN, Whittington CM. Structure of the paraplacenta and the yolk sac placenta of the viviparous Australian sharpnose shark, Rhizoprionodon taylori. Placenta 2021; 108:11-22. [PMID: 33780667 DOI: 10.1016/j.placenta.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Viviparity (live-birth) has evolved from oviparity (egg-laying) multiple times in sharks. While most transitions from oviparity to viviparity have resulted in non-placental forms of viviparity, some sharks develop a yolk sac placenta during pregnancy. The Australian sharpnose shark (Rhizoprionodon taylori) is a placental species that suspends embryonic development in a diapause for most of pregnancy. METHODS To identify structures involved in supporting rapid embryonic growth in late pregnancy, we examined uterine and placental morphology by light and electron microscopy. RESULTS Paraplacental uterine regions have morphological specialisations consistent with secretion and fluid transport between uterine tissues and the lumen. Uterine secretions in the lumen may be absorbed by the outgrowths on the embryonic umbilical cord ('appendiculae'), which are densely covered by microvilli. The placenta consists of uterine villi that interdigitate with the yolk sac and enhance the surface area available for fetomaternal exchange. The yolk sac does not invade the uterine epithelium, and the egg capsule remains intact at the placental interface, separating maternal and fetal tissues. Some placental uterine epithelial cells are secretory, and endocytic vesicles in the opposing yolk sac ectodermal cells suggest that nutrient transport is by histotrophic uterine secretion followed by fetal absorption. Respiratory gases, water and possibly small nutrients likely diffuse across the placenta, where maternal and fetal blood vessels are ~2 μm apart. DISCUSSION Placental structure in R. taylori is similar to most other sharks, but there are differences in cellular structures between species that may indicate species-specific placental transport mechanisms.
Collapse
Affiliation(s)
- Alice L Buddle
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW, 2006, Australia
| | - James U Van Dyke
- Department of Pharmacy and Biomedical Science, School of Molecular Sciences, La Trobe University, Wodonga, Victoria, Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW, 2006, Australia
| | - Colin A Simpfendorfer
- College of Science of Engineering, James Cook University, Townsville, Queensland, Australia
| | - Christopher R Murphy
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
| | - Samson N Dowland
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Brusch GA, Gavira RSB, Viton R, Dupoué A, Leroux-Coyau M, Meylan S, Le Galliard JF, Lourdais O. Additive effects of temperature and water availability on pregnancy in a viviparous lizard. ACTA ACUST UNITED AC 2020; 223:223/19/jeb228064. [PMID: 33046578 DOI: 10.1242/jeb.228064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022]
Abstract
One of the greatest current threats to biodiversity is climate change. However, understanding of organismal responses to fluctuations in temperature and water availability is currently lacking, especially during fundamental life-history stages such as reproduction. To further explore how temperature and water availability impact maternal physiology and reproductive output, we used the viviparous form of the European common lizard (Zootoca vivipara) in a two-by-two factorial design manipulating both hydric and thermal conditions, for the first time. We collected blood samples and morphological measurements during early pregnancy and post-parturition to investigate how water availability, temperature and a combination of the two influence maternal phenology, morphology, physiology and reproductive output. We observed that dehydration during gestation negatively affects maternal physiological condition (lower mass gain, higher tail reserve mobilization) but has little effect on reproductive output. These effects are mainly additive to temperature regimes, with a proportional increase in maternal costs in warmer environments. Our study demonstrates the importance of considering combined effects of water and temperature when investigating organismal responses to climate changes, especially during periods crucial for species survival such as reproduction.
Collapse
Affiliation(s)
- George A Brusch
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France .,Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Rodrigo S B Gavira
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Andréaz Dupoué
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Sandrine Meylan
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
12
|
Stewart JR. Developmental morphology and evolution of extraembryonic membranes of lizards and snakes (Reptilia, Squamata). J Morphol 2020; 282:973-994. [PMID: 32936974 DOI: 10.1002/jmor.21266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Amniote embryos are supported and nourished by a suite of tissues, the extraembryonic membranes, that provide vascular connections to the egg contents. Oviparous reptiles share a basic pattern of development inherited from a common ancestor; a vascular chorioallantoic membrane, functioning as a respiratory organ, contacts the eggshell and a vascular yolk sac membrane conveys nutrients to the embryo. Squamates (lizards, snakes) have evolved a novel variation in morphogenesis of the yolk sac that results in a unique structure, the yolk cleft/isolated yolk mass complex. This structure is a source of phylogenetic variation in architecture of the extraembryonic membranes among oviparous squamates. The yolk cleft/isolated yolk mass complex is retained in viviparous species and influences placental architecture. The aim of this paper is to review extraembryonic membrane development and morphology in oviparous and related viviparous squamates to explore patterns of variation. The survey includes all oviparous species for which data are available (11 species; 4 families). Comparisons with viviparous species encompass six independent origins of viviparity. The comparisons reveal that both phylogeny and reproductive mode influence variation in extraembryonic membrane development and that phylogenetic variation influences placental evolution. Models of the evolution of squamate placentation have relied primarily on comparisons between independently derived viviparous species. The inclusion of oviparous species in comparative analyses largely supports these models, yet exposes convergent patterns of evolution that become apparent when phylogenetic variation is recognized.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
13
|
Hughes DF, Blackburn DG. Evolutionary origins of viviparity in Chamaeleonidae. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F. Hughes
- Department of Animal Sciences University of Illinois Urbana IL USA
| | - Daniel G. Blackburn
- Department of Biology, Electron Microscopy Center Trinity College Hartford CT USA
| |
Collapse
|
14
|
Van Dyke JU, Griffith OW. Mechanisms of reproductive allocation as drivers of developmental plasticity in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:275-286. [PMID: 29733527 DOI: 10.1002/jez.2165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Developmental plasticity in offspring phenotype occurs as a result of the environmental conditions embryos experience during development. The nutritional environment provided to a fetus is an important source of developmental plasticity. Reptiles are a particularly interesting system to study this plasticity because of their varied routes of maternal nutrient allocation to reproduction. Most reptiles provide their offspring with all or most of the nutrients they require in egg yolk (lecithotrophy) while viviparous reptiles also provide their offspring with nutrients via a placenta (placentotrophy). We review the ways in which both lecithotrophy and placentotrophy can lead to differences in the nutrients embryonic reptiles receive, and discuss how these differences lead to developmental plasticity in offspring phenotype. We finish by reviewing the ecological and conservation consequences of nutritional-driven developmental plasticity in reptiles. If nutritional-driven developmental plasticity has fitness consequences, then understanding the basis of this plasticity has exciting potential to identify how reptile recruitment is affected by environmental changes in food supply. Such knowledge is critical to our ability to protect taxa threatened by environmental change.
Collapse
Affiliation(s)
- James U Van Dyke
- School of Environmental Sciences, Institute of Land, Water & Society, Charles Sturt University, Albury, NSW, Australia
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Yale Systems Biology Institute, Yale University, West Haven, Connecticut
| |
Collapse
|
15
|
Live bearing promotes the evolution of sociality in reptiles. Nat Commun 2017; 8:2030. [PMID: 29229907 PMCID: PMC5725568 DOI: 10.1038/s41467-017-02220-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
Identifying factors responsible for the emergence and evolution of social complexity is an outstanding challenge in evolutionary biology. Here we report results from a phylogenetic comparative analysis of over 1000 species of squamate reptile, nearly 100 of which exhibit facultative forms of group living, including prolonged parent–offspring associations. We show that the evolution of social groupings among adults and juveniles is overwhelmingly preceded by the evolution of live birth across multiple independent origins of both traits. Furthermore, the results suggest that live bearing has facilitated the emergence of social groups that remain stable across years, similar to forms of sociality observed in other vertebrates. These results suggest that live bearing has been a fundamentally important precursor in the evolutionary origins of group living in the squamates. Live birth may be a precursor for parent-offspring associations and subsequent sociality, but the ubiquity of live birth in mammals and parental care in birds precludes testing the relationship in those clades. Here the authors show that live birth, but not egg attendance, is associated with the evolution of social grouping in squamate reptiles.
Collapse
|
16
|
History of reptile placentology, part III: Giacomini’s 1891 histological monograph on lizard placentation. Placenta 2017; 60:93-99. [DOI: 10.1016/j.placenta.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022]
|
17
|
Griffith OW, Brandley MC, Whittington CM, Belov K, Thompson MB. Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. Gen Comp Endocrinol 2017; 244:19-29. [PMID: 27102939 DOI: 10.1016/j.ygcen.2016.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper. To understand the evolution of placental hormone production in amniotes, we examined the expression of genes involved in hormone synthesis, metabolism, and hormone receptivity in the CAM of species across the amniote phylogeny. We collected transcriptome data for the chorioallantoic membranes of the chicken (oviparous), the lizards Lerista bougainvillii (both oviparous and viviparous populations) and Pseudemoia entrecasteauxii (viviparous), and the horse Equus caballus (viviparous). The viviparous taxa differ in their mechanisms of nutrient provisioning: L. bougainvillii is lecithotrophic (embryonic nourishment is provided via the yolk only), but P. entrecasteauxii and the horse are placentotrophic (embryos are nourished via placental transport). Of the 423 hormone-related genes that we examined, 91 genes are expressed in all studied species, suggesting that the chorioallantoic membrane ancestrally had an endocrine function. Therefore, the chorioallantoic membrane appears to be a highly hormonally active organ in all amniotes. No genes are expressed only in viviparous species, suggesting that the evolution of viviparity has not required the recruitment of any specific hormone-related genes. Our data suggest that the endocrine function of the CAM as a placental tissue evolved in part through co-option of ancestral gene expression patterns.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Matthew C Brandley
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; New York University - Sydney, The Rocks, NSW 2000, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Bonnet X, Naulleau G, Shine R. The Evolutionary Economics of Embryonic-Sac Fluids in Squamate Reptiles. Am Nat 2017; 189:333-344. [DOI: 10.1086/690119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Blackburn DG, Anderson KE, Lo AR, Marquez EC, Callard IP. Placentation in watersnakes II: Placental ultrastructure in N
erodia erythrogaster
(Colubridae: Natricinae). J Morphol 2017; 278:675-688. [DOI: 10.1002/jmor.20662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Daniel G. Blackburn
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Kristie E. Anderson
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Amy R. Lo
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Emily C. Marquez
- Department of Biology; Boston University; Boston Massachusetts 02215
| | - Ian P. Callard
- Department of Biology; Boston University; Boston Massachusetts 02215
| |
Collapse
|
20
|
Blackburn DG, Anderson KE, Aronson KW, Burket MK, Chin JF, San-Francisco SK, Callard IP. Placentation in watersnakes I: Placental histology and development in North American Nerodia
(Colubridae: Natricinae). J Morphol 2017; 278:665-674. [DOI: 10.1002/jmor.20663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel G. Blackburn
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Kristie E. Anderson
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Kera W. Aronson
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Mary K. Burket
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | - Jessica F. Chin
- Department of Biology, and Electron Microscopy Facility; Trinity College; Hartford Connecticut 06106
| | | | - Ian P. Callard
- Department of Biology; Boston University; Boston Massachusetts 02215
| |
Collapse
|
21
|
Kim YK, Blackburn DG. Fetal Membrane Ultrastructure and Development in the Oviparous MilksnakeLampropeltis triangulum(Colubridae) with Reference to Function and Evolution in Snakes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:290-302. [DOI: 10.1002/jez.b.22684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/31/2016] [Accepted: 06/10/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Young K. Kim
- Department of Biology and Electron Microscopy Facility; Trinity College; Hartford Connecticut
| | - Daniel G. Blackburn
- Department of Biology and Electron Microscopy Facility; Trinity College; Hartford Connecticut
| |
Collapse
|
22
|
Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Dev Genes Evol 2016; 226:79-85. [DOI: 10.1007/s00427-016-0531-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
|
23
|
Blackburn DG. History of reptile placentology II: WilhelmHaacke’s 1885 account of lizard viviparity. ZOOL ANZ 2016. [DOI: 10.1016/j.jcz.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Blackburn DG, Avanzati AM, Paulesu L. Classics revisited. History of reptile placentology: Studiati's early account of placentation in a viviparous lizard. Placenta 2015; 36:1207-11. [DOI: 10.1016/j.placenta.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022]
|
25
|
Pyron RA. Advancing perspectives on parity-mode evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:562-3. [DOI: 10.1002/jez.b.22644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023]
Affiliation(s)
- R. Alexander Pyron
- Department of Biological Sciences; The George Washington University; Washington District of Columbia
| |
Collapse
|
26
|
Wright AM, Lyons KM, Brandley MC, Hillis DM. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:504-16. [PMID: 26227660 DOI: 10.1002/jez.b.22642] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/09/2015] [Indexed: 01/20/2023]
Abstract
Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were rare. The three putative reversals to oviparity with the strongest phylogenetic support occurred in the snakes Eryx jayakari and Lachesis, and the lizard, Liolaemus calchaqui. Our results emphasize that because the conclusions of ancestral state reconstruction studies are often highly sensitive to the methods and assumptions of analysis, researchers should carefully consider this sensitivity when evaluating alternative hypotheses of character-state evolution.
Collapse
Affiliation(s)
- April M Wright
- Department of Integrative Biology, University of Texas, Austin, Texas
| | - Kathleen M Lyons
- Department of Integrative Biology, University of Texas, Austin, Texas
| | - Matthew C Brandley
- School of Biological Sciences, University of Sydney, Australia.,New York University-Sydney, The Rocks, Australia
| | - David M Hillis
- Department of Integrative Biology, University of Texas, Austin, Texas
| |
Collapse
|