1
|
Donizetti A, Calicchio M, Romano MZ, Rosati L, Turco M, Carrese AM, del Gaudio R, Ferrandino I, Aniello F. Expression of Insl3 Protein in Adult Danio rerio. Int J Mol Sci 2024; 25:5419. [PMID: 38791457 PMCID: PMC11122137 DOI: 10.3390/ijms25105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Insulin-like peptide 3 (INSL3) is a biomarker for Leydig cells in the testes of vertebrates, and it is principally involved in spermatogenesis through specific binding with the RXFP2 receptor. This study reports the insl3 gene transcript and the Insl3 prepropeptide expression in both non-reproductive and reproductive tissues of Danio rerio. An immunohistochemistry analysis shows that the hormone is present at a low level in the Leydig cells and germ cells at all stages of Danio rerio testis differentiation. Considering that the insl3 gene is transcribed in Leydig cells, our results highlight an autocrine and paracrine function of this hormone in the Danio rerio testis, adding new information on the Insl3 mode of action in reproduction. We also show that Insl3 and Rxfp2 belonging to Danio rerio and other vertebrate species share most of the amino acid residues involved in the ligand-receptor interaction and activation, suggesting a conserved mechanism of action during vertebrate evolution.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Mauro Calicchio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Anna Maria Carrese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Rosanna del Gaudio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.D.); (M.C.); (L.R.); (M.T.); (A.M.C.); (R.d.G.); (I.F.)
| |
Collapse
|
2
|
Blasiak A, Gugula A, Gundlach AL, Olucha-Bordonau FE, Aniello F, Donizetti A. Relaxin ligand/receptor systems in the developing teleost fish brain: Conserved features with mammals and a platform to address neuropeptide system functions. Front Mol Neurosci 2022; 15:984524. [PMID: 36277494 PMCID: PMC9580368 DOI: 10.3389/fnmol.2022.984524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
The relaxins (RLNs) are a group of peptide hormone/neuromodulators that can regulate a wide range of physiological processes ranging from reproduction to brain function. All the family members have originated from a RLN3-like ancestor via different rounds of whole genome and gene specific duplications during vertebrate evolution. In mammals, including human, the divergence of the different family members and the emergence of new members led to the acquisition of specific functions for the various relaxin family peptide and associated receptor genes. In particular, in mammals, it was shown, that the role of RLN3 is correlated to the modulation of arousal, stress responses, emotion, social recognition, and other brain functions, positioning this gene/peptide as a potential therapeutic target for neuropsychiatric disorders. This review highlights the evolutionary conservation of relaxin family peptide and receptor gene expression and their associated brain neural circuits. In the zebrafish, the expression pattern of the different relaxin family members has specific features that are conserved in higher species, including a likely similar functional role for the ancestral RLN3-like gene. The use of different model organisms, particularly the zebrafish, to explore the diversification and conservation of relaxin family ligands and receptor systems, provides a relatively high-throughput platform to identify their specific conserved or differential neuromodulatory roles in higher species including human.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L. Gundlach
- Florey Department of Neuroscience and Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Aldo Donizetti,
| |
Collapse
|
3
|
Ratnapriya R, Acar İE, Geerlings MJ, Branham K, Kwong A, Saksens NTM, Pauper M, Corominas J, Kwicklis M, Zipprer D, Starostik MR, Othman M, Yashar B, Abecasis GR, Chew EY, Ferrington DA, Hoyng CB, Swaroop A, den Hollander AI. Family-based exome sequencing identifies rare coding variants in age-related macular degeneration. Hum Mol Genet 2021; 29:2022-2034. [PMID: 32246154 PMCID: PMC7390936 DOI: 10.1093/hmg/ddaa057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.
Collapse
Affiliation(s)
- Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - İlhan E Acar
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Alan Kwong
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole T M Saksens
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Marc Pauper
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Jordi Corominas
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Madeline Kwicklis
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - David Zipprer
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Mohammad Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Beverly Yashar
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Y Chew
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory (NNRL), National Eye Institute, Bethesda, MD 20892, USA
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500, The Netherlands
| |
Collapse
|
4
|
Duan S, Zhang X, Jiang X, Xie Y, Zheng L, Zhang B, Xiao W, Xie X, Xie X, Li J, Ma S. RXFP2 as novel potential biomarker for abnormal differentiation induced by diethylstilbestrol in the gubernaculum of fetal mice. Am J Transl Res 2020; 12:3715-3727. [PMID: 32774729 PMCID: PMC7407749 DOI: pmid/32774729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023]
Abstract
Environmental estrogens (EEs) have been correlated with abnormalities in the male urogenital system. However, the mechanism underlying the effect of these molecules remains unclear. In vitro and in vivo experiments were performed to examine the expression level and mechanism of relaxin family peptide receptor 2 (RXFP2) in the gubernaculum of fetal mice following diethylstilbestrol (DES) treatment. The in vivo results demonstrate that DES treatment increased the stillbirth rate gradually, decreased the gubernacular cone volume significantly, and disrupted the tissue structure, leading to incomplete testicular descent. In vitro experiments reveal that DES administration resulted in abnormal cellular morphology and structural disorder of gubernacular cells, which lost their original morphology in a dose-dependent manner. Moreover, DES-induced F-actin rearrangement and stress fiber formation in cultured cells. Protein quantitative analysis showed that the RXFP2 level in each experimental group was significantly lower than that of the normal group. In conclusion, DES affects the morphology and alters the gubernaculum structure, as well as the expression of RXFP2 protein. These data demonstrate that DES is toxic to gubernaculum in fetal mice, and that RXFP2 is associated with the abnormal gubernaculum morphology induced by DES. Taken together, these data suggest that RXFP2 may be a novel potential biomarker for abnormal differentiation of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Shenzhen Pingshan District Woman’s and Children’s Hospital, Southern Medical UniversityNo. 6 Longxingnan Road, Shenzhen 518122, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Shenzhen Pingshan District Woman’s and Children’s Hospital, Southern Medical UniversityNo. 6 Longxingnan Road, Shenzhen 518122, Guangdong, China
| | - Yao Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Lian Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Bingna Zhang
- Center for Translational Medicine Research, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xinquan Xie
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeNo. 69 Dongxiabei Road, Shantou 515041, Guangdong, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeNo. 57 Changping Road, Shantou 515041, Guangdong, China
| |
Collapse
|
5
|
D’Agostino S, Testa M, Aliperti V, Venditti M, Minucci S, Aniello F, Donizetti A. Expression pattern dysregulation of stress- and neuronal activity-related genes in response to prenatal stress paradigm in zebrafish larvae. Cell Stress Chaperones 2019; 24:1005-1012. [PMID: 31209726 PMCID: PMC6717227 DOI: 10.1007/s12192-019-01017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Maternal stress during pregnancy adversely affects developmental fetal programming. Glucocorticoid excess is one of those conditions that underlie the prenatal stress and can lead to many pathological disorders later in life. Beyond the obvious use of mammalian model organisms to uncover the different mechanisms at the basis of prenatal stress effects, zebrafish represents a complementary fruitful model for this research field. Here we demonstrated that the application of an experimental paradigm, which simulates prenatal stress by exposing embryos to cortisol excess, produced an alteration of gene expression pattern. In particular, the transcript level of hsd11b2, a gene involved in the cortisol catabolism, was affected in prenatally stressed larvae, even after many hours from the removal of cortisol excess. Interestingly, the expression pattern of c-fos, a marker gene of neural activity, was affected in prenatally stressed larvae even in response to a swirling and osmotic stress challenge. Our data corroborate the idea of zebrafish as a useful model organism to study prenatal stress effects on vertebrate development.
Collapse
Affiliation(s)
- Serena D’Agostino
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Martino Testa
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Sergio Minucci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| |
Collapse
|
6
|
Ivell R, Anand-Ivell R. Insulin-like peptide 3 (INSL3) is a major regulator of female reproductive physiology. Hum Reprod Update 2018; 24:639-651. [DOI: 10.1093/humupd/dmy029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | |
Collapse
|
7
|
Venditti M, Donizetti A, Fiengo M, Fasano C, Santillo A, Aniello F, Minucci S. Temporal and spatial expression of insulin-like peptide (insl5a and insl5b) paralog genes during the embryogenesis of Danio rerio. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:33-40. [PMID: 29319231 DOI: 10.1002/jez.b.22787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/31/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
Relaxin (RLN) and insulin (INSL)-like peptides are member of the INSL/RLN superfamily, which are encoded by seven genes in humans and can activate the G-protein coupled receptor RXFP 1-4. These peptides evolved from a common ancestor, RLN3-like gene. Two rounds of whole genome duplication (WGD) in early vertebrate evolution, together with an additional WGD in the teleost lineage, caused an expansion of RLN genes set in the genome of Danio rerio. In particular, six RLN genes are present: a single copy of rln and insl3 genes, and two paralogs for the rln3 gene (rln3a and rln3b), and the insl5 gene (insl5a and insl5b). We have already reported the presence of rln3a and rln3b genes in the developing zebrafish brain, as well as the expression of rln gene in the developing zebrafish brain and extraneural territories, such as thyroid gland and pancreas. Here, we report for the first time the expression of the two parologs genes for insl5, insl5a, and insl5b in D. rerio embryonic development. The corresponding transcripts of both the paralogs are present in all embryonic stages analyzed by RT-qPCR. In situ hybridization analyses showed a restricted signal in intestinal cells and the pancreatic region at 72 hpf for insl5a, while at 96 hpf both genes are expressed in specific intestinal cells. Furthermore, in adult zebrafish intestine tissue, in situ hybridation experiments showed that insl5a transcript is specifically localized in the goblet cells, while insl5b transcript is in enteroendocrine cells. These data revealed a high degree of gene expression pattern conservation for such genes in vertebrate evolution.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Marcella Fiengo
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli, Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|