1
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
2
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
3
|
Wang Y, Verbrugghe E, Meuris L, Chiers K, Kelly M, Strubbe D, Callewaert N, Pasmans F, Martel A. Epidermal galactose spurs chytrid virulence and predicts amphibian colonization. Nat Commun 2021; 12:5788. [PMID: 34608163 PMCID: PMC8490390 DOI: 10.1038/s41467-021-26127-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
The chytrid fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans cause the skin disease chytridiomycosis in amphibians, which is driving a substantial proportion of an entire vertebrate class to extinction. Mitigation of its impact is largely unsuccessful and requires a thorough understanding of the mechanisms underpinning the disease ecology. By identifying skin factors that mediate key events during the early interaction with B. salamandrivorans zoospores, we discovered a marker for host colonization. Amphibian skin associated beta-galactose mediated fungal chemotaxis and adhesion to the skin and initiated a virulent fungal response. Fungal colonization correlated with the skin glycosylation pattern, with cutaneous galactose content effectively predicting variation in host susceptibility to fungal colonization between amphibian species. Ontogenetic galactose patterns correlated with low level and asymptomatic infections in salamander larvae that were carried over through metamorphosis, resulting in juvenile mortality. Pronounced variation of galactose content within some, but not all species, may promote the selection for more colonization resistant host lineages, opening new avenues for disease mitigation.
Collapse
Affiliation(s)
- Yu Wang
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elin Verbrugghe
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leander Meuris
- grid.5342.00000 0001 2069 7798Center for Medical Biotechnology, Department of Biochemistry and Microbiology, VIB-Ghent University, Zwijnaarde, Belgium
| | - Koen Chiers
- grid.5342.00000 0001 2069 7798Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Moira Kelly
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Diederik Strubbe
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- grid.5342.00000 0001 2069 7798Center for Medical Biotechnology, Department of Biochemistry and Microbiology, VIB-Ghent University, Zwijnaarde, Belgium
| | - Frank Pasmans
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
DE Meester G, Šunje E, Prinsen E, Verbruggen E, VAN Damme R. Toxin variation among salamander populations: discussing potential causes and future directions. Integr Zool 2020; 16:336-353. [PMID: 32965720 DOI: 10.1111/1749-4877.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians produce defensive chemicals which provide protection against both predators and infections. Within species, populations can differ considerably in the composition and amount of these chemical defenses. Studying intraspecific variation in toxins and linking it to environmental variables may help us to identify the selective drivers of toxin evolution, such as predation pressure and infection risk. Recently, there has been a renewed interest in the unique toxins produced by salamanders from the genus Salamandra: the samandarines. Despite this attention, intraspecific variation has largely been ignored within Salamandra-species. The aim of this study was to investigate whether geographic variation in profiles of samandarines exists, by sampling 4 populations of Salamandra atra over its range in the Dinaric Alps. In addition, we preliminary explored whether potential variation could be explained by predation (counting the number of snake species) and infection risk (cultivation and genomic analyses of collected soil samples). Salamanders from the 4 populations differed in toxin composition and in the size of their poison glands, although not in overall toxin quantity. Nor predation nor infection risk could explain this variation, as populations barely differed in these variables. Sampling over a much broader geographic range, using better estimators for predation and infection risk, will contribute to an improved understanding of how environment may shape variation in chemical defenses. Nevertheless, as the 4 populations of S. atra did differ in their toxin profiles, we propose that this species provides an interesting opportunity for further ecological and evolutionary studies on amphibian toxins.
Collapse
Affiliation(s)
- Gilles DE Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| | - Emina Šunje
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, Bosnia-Hercegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, Bosnia-Hercegovina
| | - Els Prinsen
- Department of Biology, Impress, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plant and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Raoul VAN Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Bonett RM, Hess AJ, Ledbetter NM. Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution. Evol Biol 2020. [DOI: 10.1007/s11692-020-09497-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Yin Z, Yang B, Ren H. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Skin Diseases and Care. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:311-321. [DOI: 10.1007/978-981-32-9421-9_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Sabino-Pinto J, Goedbloed DJ, Sanchez E, Czypionka T, Nolte AW, Steinfartz S. The Role of Plasticity and Adaptation in the Incipient Speciation of a Fire Salamander Population. Genes (Basel) 2019; 10:genes10110875. [PMID: 31683677 PMCID: PMC6896149 DOI: 10.3390/genes10110875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity and local adaptation via genetic change are two major mechanisms of response to dynamic environmental conditions. These mechanisms are not mutually exclusive, since genetic change can establish similar phenotypes to plasticity. This connection between both mechanisms raises the question of how much of the variation observed between species or populations is plastic and how much of it is genetic. In this study, we used a structured population of fire salamanders (Salamandra salamandra), in which two subpopulations differ in terms of physiology, genetics, mate-, and habitat preferences. Our goal was to identify candidate genes for differential habitat adaptation in this system, and to explore the degree of plasticity compared to local adaptation. We therefore performed a reciprocal transfer experiment of stream- and pond-originated salamander larvae and analyzed changes in morphology and transcriptomic profile (using species-specific microarrays). We observed that stream- and pond-originated individuals diverge in morphology and gene expression. For instance, pond-originated larvae have larger gills, likely to cope with oxygen-poor ponds. When transferred to streams, pond-originated larvae showed a high degree of plasticity, resembling the morphology and gene expression of stream-originated larvae (reversion); however the same was not found for stream-originated larvae when transferred to ponds, where the expression of genes related to reduction-oxidation processes was increased, possibly to cope with environmental stress. The lack of symmetrical responses between transplanted animals highlights the fact that the adaptations are not fully plastic and that some level of local adaptation has already occurred in this population. This study illuminates the process by which phenotypic plasticity allows local adaptation to new environments and its potential role in the pathway of incipient speciation.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Daniel J Goedbloed
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Eugenia Sanchez
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Arne W Nolte
- Department of Ecological Genomics, Institute for Biology and Environmental Sciences, University of Oldenburg, 26129 Oldenburg, Germany.
| | - Sebastian Steinfartz
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Preißler K, Gippner S, Lüddecke T, Krause ET, Schulz S, Vences M, Steinfartz S. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J Zool (1987) 2019. [DOI: 10.1111/jzo.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Preißler
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| | - S. Gippner
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - T. Lüddecke
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Animal Venomics Research Group Fraunhofer Institute for Molecular Biology and Applied Ecology Gießen Germany
| | - E. T. Krause
- Institute of Animal Welfare and Animal Husbandry Friedrich‐Loeffler‐Institut Celle Germany
| | - S. Schulz
- Institute of Organic Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - M. Vences
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - S. Steinfartz
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| |
Collapse
|
9
|
Sanchez E, Pröhl H, Lüddecke T, Schulz S, Steinfartz S, Vences M. The conspicuous postmetamorphic coloration of fire salamanders, but not their toxicity, is affected by larval background albedo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:26-35. [DOI: 10.1002/jez.b.22845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Eugenia Sanchez
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| | - Heike Pröhl
- The University of Veterinary Medicine Hannover Foundation does not have departments, only clinics, institutes and special units, Institute of Zoology, Tierärztliche Hochschule HannoverHannover Germany
| | - Tim Lüddecke
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
- LOEWE Centre for Translational Biodiversity Genomics, Animal Venomics Research Group, Fraunhofer Institute for Molecular Biology and Applied EcologyGießen Germany
| | - Stefan Schulz
- Department of Life Sciences, Institute of Organic Chemistry, Technische Universität BraunschweigBraunschweig Germany
| | - Sebastian Steinfartz
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| | - Miguel Vences
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| |
Collapse
|
10
|
Lüddecke T, Schulz S, Steinfartz S, Vences M. A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra. Naturwissenschaften 2018; 105:56. [DOI: 10.1007/s00114-018-1579-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022]
|
11
|
Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 2018; 27:2698-2713. [PMID: 29742304 DOI: 10.1111/mec.14713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Transcriptomes of organisms reveal differentiation associated with the use of different habitats. However, this leaves open how much of the observed differentiation can be attributed to genetic differences or to transcriptional plasticity. In this study, we disentangle causes of differential gene expression in larvae of the European fire salamander from the Kottenforst forest in Germany. Larvae inhabit permanent streams and ephemeral ponds and represent an example of a young evolutionary split associated with contrasting ecological conditions. We hypothesized that adaptation towards differences in water temperature plays a role because the thermal regime between stream and pond habitats differs notably. Tissue samples from tail fins of larvae were collected to study gene expression using microarrays. We found ample evidence for differentiation among larvae occupying different habitats in nature with 2,800 of 11,797 genes being differentially expressed. We then quantified transcriptional plasticity towards temperature and genetic differentiation based on controlled temperature laboratory experiments. Gene-by-environment interactions modelling revealed that 28% of the gene expression divergence observed among samples in nature could be attributed to plasticity related to water temperature. Expression patterns of only a small number of 101 genes were affected by the genotype. Our analysis demonstrates that effects of environmental factors must be taken into account to explain variation of gene expression in salamanders in nature. Notwithstanding, it provides first evidence that genetic factors determined gene expression divergence between pond and stream ecotypes and could be involved in adaptive evolution.
Collapse
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Daniel J Goedbloed
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arne W Nolte
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Ecological Genomics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|