1
|
Duan X, Wang H, Cao Z, Su N, Wang Y, Zheng Y. Deficiency of ValRS-m Causes Male Infertility in Drosophila melanogaster. Int J Mol Sci 2024; 25:7489. [PMID: 39000597 PMCID: PMC11242588 DOI: 10.3390/ijms25137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.
Collapse
Affiliation(s)
- Xin Duan
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Haolin Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Zhixian Cao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Na Su
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yufeng Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Ya Zheng
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| |
Collapse
|
2
|
Khan S, Mishra RK. Multigenerational Effect of Heat Stress on the Drosophila melanogaster Sperm Proteome. J Proteome Res 2024. [PMID: 38743012 DOI: 10.1021/acs.jproteome.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The effect of the parental environment on offspring through non-DNA sequence-based mechanisms, such as DNA methylation, chromatin modifications, noncoding RNAs, and proteins, could only be established after the conception of "epigenetics". These effects are now broadly referred to as multigenerational epigenetic effects. Despite accumulating evidence of male gamete-mediated multigenerational epigenetic inheritance, little is known about the factors that underlie heat stress-induced multigenerational epigenetic inheritance via the male germline in Drosophila. In this study, we address this gap by utilizing an established heat stress paradigm in Drosophila and investigating its multigenerational effect on the sperm proteome. Our findings indicate that multigenerational heat stress during the early embryonic stage significantly influences proteins in the sperm associated with translation, chromatin organization, microtubule-based processes, and the generation of metabolites and energy. Assessment of life-history traits revealed that reproductive fitness and stress tolerance remained unaffected by multigenerational heat stress. Our study offers initial insights into the chromatin-based epigenetic mechanisms as a plausible means of transmitting heat stress memory through the male germline in Drosophila. Furthermore, it sheds light on the repercussions of early embryonic heat stress on male reproductive potential. The data sets from this study are available at the ProteomeXchange Consortium under the identifier PXD037488.
Collapse
Affiliation(s)
- Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
- Tata Institute for Genetics and Society, Bengaluru-560 065, Karnataka, India
| |
Collapse
|
3
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
4
|
RpS3 Is Required for Spermatogenesis of Drosophila melanogaster. Cells 2023; 12:cells12040573. [PMID: 36831240 PMCID: PMC9954509 DOI: 10.3390/cells12040573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ribosomal proteins (RPs) constitute the ribosome, thus participating in the protein biosynthesis process. Emerging studies have suggested that many RPs exhibit different expression levels across various tissues and function in a context-dependent manner for animal development. Drosophila melanogaster RpS3 encodes the ribosomal protein S3, one component of the 40S subunit of ribosomes. We found that RpS3 is highly expressed in the reproductive organs of adult flies and its depletion in male germline cells led to severe defects in sperm production and male fertility. Immunofluorescence staining showed that RpS3 knockdown had little effect on early germ cell differentiation, but strongly disrupted the spermatid elongation and individualization processes. Furthermore, we observed abnormal morphology and activity of mitochondrial derivatives in the elongating spermatids of RpS3-knockdown testes, which could cause the failure of axoneme elongation. We also found that RpS3 RNAi inhibited the formation of the individualization complex that takes charge of disassociating the spermatid bundle. In addition, excessive apoptotic cells were detected in the RpS3-knockdown testes, possibly to clean the defective spermatids. Together, our data demonstrated that RpS3 plays an important role in regulating spermatid elongation and individualization processes and, therefore, is required for normal Drosophila spermatogenesis.
Collapse
|
5
|
Ding J, Tang D, Zhang Y, Gao X, Du C, Shen W, Jin S, Zhu J. Transcriptomes of Testes at Different Developmental Stages in the Opsariichthys bidens Predict Key Genes for Testis Development and Spermatogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:123-139. [PMID: 36520355 DOI: 10.1007/s10126-022-10186-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Testis development is a complex process involving multiple genes, and the molecular mechanisms underlying testis development in Opsariichthys bidens remain unclear. We performed transcriptome sequencing analysis on a total of 12 samples of testes from stages II, III, IV, and V of O. bidens and obtained a total of 79.52 Gb clean data, as well as 288,573 transcripts and 116,215 unigenes. Differential expression analysis showed that 22,857 differentially expressed genes (DEGs) were screened in six comparison groups (III vs. II, IV vs. II, V vs. II, IV vs. III, V vs. III, and V vs. IV). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs showed that six comparison groups were significantly enriched for a total of 20 significantly up- or down-regulated pathways, including six pathways related to signal transduction, three pathways related to energy metabolism, five pathways related to disease, and two pathways related to ribosomes. Furthermore, our investigation revealed that DEGs were enriched in several important functional pathways, such as Huntington's disease signaling pathway, TGF-β signaling pathway, and ribosome signaling pathway. Protein-protein interaction network analysis of DEGs identified 63 up-regulated hub genes, including 9 kinesin genes and 2 cytoplasmic dynein genes, and 39 down-regulated hub genes, including 13 ribosomal protein genes. This result contributes to the knowledge of spermatogenesis and testis development in O. bidens.
Collapse
Affiliation(s)
- Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315103, Zhejiang, China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, 315832, Zhejiang, China.
| |
Collapse
|
6
|
He Z, Fang Y, Li DC, Chen DS, Wu F. Toxicity of procymidone to Bombyx mori based on physiological and transcriptomic analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21906. [PMID: 35398926 DOI: 10.1002/arch.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Procymidone is widely used in vegetables and fruits because of its broad-spectrum and high efficiency. However, it is unclear whether procymidone can affect silkworm (Bombyx mori) growth and cocoon production. This study investigated the effects of procymidone on the growth and cocoon production of silkworms. We analyzed the growth, and cocoon quality of fifth instar larvae fed on mulberry leaves saturated with different concentrations (2.5, 5, and 10 mg/ml) of procymidone and the control. Results showed that procymidone supplementation decreased the larval growth and cocoon quality compared to the control group, suggesting that procymidone had toxicity to silkworms. Additionally, after transcriptomic analysis, we identified 396 significantly differentially expressed genes (DEGs) in the presence of procymidone. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) illustrated that these DEGs were closely related to metabolism. Taken together, these results confirmed that procymidone could cause toxicity by affecting metabolism in silkworm larvae. We believed that these results could provide important materials for the effect of procymidone on silkworms and gave us some clues for pesticides used in the mulberry garden.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
| | - De-Chen Li
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Deng-Song Chen
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|