1
|
Balcarcel AM, Sánchez-Villagra MR, Evin A, Nussbaumer M, Hemelsdaël A, Geiger M. Breed function and behaviour correlate with endocranial volume in domestic dogs. Biol Lett 2024; 20:20240342. [PMID: 39532143 PMCID: PMC11557248 DOI: 10.1098/rsbl.2024.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Domestic dogs display a remarkable diversity of functions, morphologies and cognitive abilities. Using data from 1682 dogs representing 172 breeds, we tested for variation in relative endocranial volume (REV), a proxy for brain size and a basic measure of cognitive ability, in relation to breed function, phylogenetic classification, cranial shape, cooperative behaviour and temperament. Function, body size, phylogenetic clade and cranial shape correlate with REV. Toy dogs, functioning mainly as companions, have the largest endocranial volumes relative to their body size. Working dogs, bred to perform complex human-assistance skills and reportedly possessing higher cognitive abilities, have the smallest. Our results thus show that complex skills and cooperative behaviour-a hallmark of social cognition-do not predict larger REV in dogs. However, REV increases with fear and aggression, attention-seeking and separation anxiety and decreases with trainability. Significant correlations between REV and behavioural traits underscore the evolutionary plasticity of mammalian brain size under domestication and artificial selection and provide support for hypotheses linking the modulation of fear and aggression to brain size change under domestication.
Collapse
Affiliation(s)
- Ana M. Balcarcel
- Institute of Evolutionary Science (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Allowen Evin
- Institute of Evolutionary Science (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Adeline Hemelsdaël
- Institute of Evolutionary Science (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Madeleine Geiger
- Natural History Museum St Gallen, St Gallen, Switzerland
- SWILD—Urban Ecology & Wildlife Research, Zurich, Switzerland
| |
Collapse
|
2
|
Cucchi T, Neaux D, Féral L, Goussard F, Adriensen H, Elleboudt F, Sansalone G, Schafberg R. How domestication, feralization and experience-dependent plasticity affect brain size variation in Sus scrofa. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240951. [PMID: 39295922 PMCID: PMC11407859 DOI: 10.1098/rsos.240951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024]
Abstract
Among domestic species, pigs experienced the greatest brain size reduction, but the extent and factors of this reduction remain unclear. Here, we used the brain endocast volume collected from 92 adult skulls of wild, captive, feral and domestic Sus scrofa to explore the effects of domestication, feralization and captivity over the brain size variation of this species. We found a constant brain volume increase over 24 months, while body growth slowed down from month 20. We observed an 18% brain size reduction between wild boars and pigs, disagreeing with the 30%-40% reduction previously mentioned. We did not find significant sexual differences in brain volume, refuting the theory of the attenuation of male secondary sexual characteristics through the selection for reduced male aggression. Feralization in Australia led to brain size reduction-probably as an adaptation to food scarcity and drought, refuting the reversal to wild ancestral brain size. Finally, free-born wild boars raised in captivity showed a slight increase in brain size, potentially due to a constant and high-quality food supply as well as new allospecific interactions. These results support the need to further explore the influence of diet, environment and experience on brain size evolution during animal domestication.
Collapse
Affiliation(s)
- T Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle CNRS, Paris UMR 7209, France
| | - D Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle CNRS, Paris UMR 7209, France
| | - L Féral
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle CNRS, Paris UMR 7209, France
| | - F Goussard
- Centre de Recherche en Paléontologie - Paris (CR2P), Muséum National d'Histoire Naturelle, Paris, France
| | - H Adriensen
- PIXANIM, UMR Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, Nouzilly, France
| | - F Elleboudt
- PIXANIM, UMR Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, Nouzilly, France
| | - G Sansalone
- Department of Life Sciences, University of Modena and Reggio Emilia,, Modena, Via Campi 213D 41125, Italy
- Function, Evolution and Anatomy Research Lab, Zoology Division, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - R Schafberg
- Central Natural Science Collections, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Venkatachalam B, Biswa BB, Nagayama H, Koide T. Association of tameness and sociability but no sign of domestication syndrome in mice selectively bred for active tameness. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12887. [PMID: 38373143 PMCID: PMC10876149 DOI: 10.1111/gbb.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.
Collapse
Affiliation(s)
- Bharathi Venkatachalam
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Bhim B. Biswa
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Hiromichi Nagayama
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| | - Tsuyoshi Koide
- Mouse Genomics Resource LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
- Graduate Institute for Advanced StudiesSOKENDAIMishimaShizuokaJapan
| |
Collapse
|
4
|
Balcarcel AM, Geiger M, Sánchez-Villagra MR. Cranial form differences in goats by breed and domestic status. Sci Rep 2024; 14:917. [PMID: 38195639 PMCID: PMC10776561 DOI: 10.1038/s41598-023-50357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Domestic goats (Capra hircus) are globally represented by over 300 breeds, making them a useful model for investigating patterns of morphological change related to domestication. However, they have been little studied, likely due to their poor representation in museum collections and the difficulty in obtaining truly wild goat (Capra aegagrus, the bezoar) samples. Similar studies on other species reveal that domestication correlates with craniofacial alterations in domestics, which are non-uniform and often species-specific. Here, we use three-dimensional geometric morphometric methods (3DGMM) to describe and quantify cranial shape variation in wild (n = 21) versus domestic (n = 54) goats. We find that mean cranial shapes differ significantly between wild and domestic goats as well as between certain breeds. The detected differences are lower in magnitude than those reported for other domestic groups, possibly explained by the fewer directions of artificial selection in goat breeding, and their low global genetic diversity compared to other livestock. We also find tooth-row length reduction in the domestics, suggestive of rostral shortening-a prediction of the "domestication syndrome" (DS). The goat model thus expands the array-and combinations of-morphological changes observed under domestication, notably detecting alterations to the calvarium form which could be related to the ~ 15% brain size reduction previously reported for domestic compared to wild goats. The global success of domestic goats is due more to their ability to survive in a variety of harsh environments than to systematized human management. Nonetheless, their domestication has resulted in a clear disruption from the wild cranial form, suggesting that even low-intensity selection can lead to significant morphological changes under domestication.
Collapse
Affiliation(s)
- A M Balcarcel
- Department of Paleontology, University of Zurich, Karl-Schmid-Str. 4, 8006, Zurich, Switzerland.
| | - M Geiger
- Naturmuseum St.Gallen, Rorschacher Strasse 263, 9016, St.Gallen, Switzerland
| | - M R Sánchez-Villagra
- Department of Paleontology, University of Zurich, Karl-Schmid-Str. 4, 8006, Zurich, Switzerland
| |
Collapse
|
5
|
Ferreira VHB, Lansade L, Calandreau L, Cunha F, Jensen P. Are domesticated animals dumber than their wild relatives? A comprehensive review on the domestication effects on animal cognitive performance. Neurosci Biobehav Rev 2023; 154:105407. [PMID: 37769929 DOI: 10.1016/j.neubiorev.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Animal domestication leads to diverse behavioral, physiological, and neurocognitive changes in domesticated species compared to their wild relatives. However, the widely held belief that domesticated species are inherently less "intelligent" (i.e., have lower cognitive performance) than their wild counterparts requires further investigation. To investigate potential cognitive disparities, we undertook a thorough review of 88 studies comparing the cognitive performance of domesticated and wild animals. Approximately 30% of these studies showed superior cognitive abilities in wild animals, while another 30% highlighted superior cognitive abilities in domesticated animals. The remaining 40% of studies found similar cognitive performance between the two groups. Therefore, the question regarding the presumed intelligence of wild animals and the diminished cognitive ability of domesticated animals remains unresolved. We discuss important factors/limitations for interpreting past and future research, including environmental influences, diverse objectives of domestication (such as breed development), developmental windows, and methodological issues impacting cognitive comparisons. Rather than perceiving these limitations as constraints, future researchers should embrace them as opportunities to expand our understanding of the complex relationship between domestication and animal cognition.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - Léa Lansade
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Felipe Cunha
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
6
|
Pohle AK, Zalewski A, Muturi M, Dullin C, Farková L, Keicher L, Dechmann DKN. Domestication effect of reduced brain size is reverted when mink become feral. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230463. [PMID: 37416828 PMCID: PMC10320332 DOI: 10.1098/rsos.230463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
A typical consequence of breeding animal species for domestication is a reduction in relative brain size. When domesticated animals escape from captivity and establish feral populations, the larger brain of the wild phenotype is usually not regained. In the American mink (Neovison vison), we found an exception to this rule. We confirmed the previously described reduction in relative braincase size and volume compared to their wild North American ancestors in mink bred for their fur in Poland, in a dataset of 292 skulls. We then also found a significant regrowth of these measures in well-established feral populations in Poland. Closely related, small mustelids are known for seasonal reversible changes in skull and brain size. It seems that these small mustelids are able to regain the brain size, which is adaptive for living in the wild, and flexibly respond to selection accordingly.
Collapse
Affiliation(s)
- Ann-Kathrin Pohle
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Bücklestraße 5a, 78467 Konstanz, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Christian Dullin
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
- Department Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Herman-Rein-Straße 3, 37075 Goettingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lucie Farková
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Zoology, Charles University, Viničná 7, 128 00 Prague, Czech Republic
| | - Lara Keicher
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: de novo chromosome-length genome assembly, DNA methylome, and cranial morphology. Gigascience 2023; 12:giad018. [PMID: 36994871 PMCID: PMC10353722 DOI: 10.1093/gigascience/giad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg 06484, Germany
| | - Ksenia Skvortsova
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ozren Bogdanovic
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, Newcastle, NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital,Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
8
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: De novo chromosome-length genome assembly, DNA methylome, and cranial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525801. [PMID: 36747621 PMCID: PMC9900879 DOI: 10.1101/2023.01.26.525801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, Australia 2006
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27 06484 Quedlinburg, Germany
| | | | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Lesch R, Kotrschal K, Kitchener AC, Fitch WT, Kotrschal A. The expensive-tissue hypothesis may help explain brain-size reduction during domestication. Commun Integr Biol 2022; 15:190-192. [PMID: 35957842 PMCID: PMC9359384 DOI: 10.1080/19420889.2022.2101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Morphological traits, such as white patches, floppy ears and curly tails, are ubiquitous in domestic animals and are referred to as the ‘domestication syndrome’. A commonly discussed hypothesis that has the potential to provide a unifying explanation for these traits is the ‘neural crest/domestication syndrome hypothesis’. Although this hypothesis has the potential to explain most traits of the domestication syndrome, it only has an indirect connection to the reduction of brain size, which is a typical trait of domestic animals. We discuss how the expensive-tissue hypothesis might help explain brain-size reduction in domestication.
Collapse
Affiliation(s)
- Raffaela Lesch
- Institute of Animal Welfare Science, University for Veterinary Medicine, Austria
| | - Kurt Kotrschal
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - W. Tecumseh Fitch
- Institute of Animal Welfare Science, University for Veterinary Medicine, Austria
| | - Alexander Kotrschal
- Behavioural Ecology, Animal Science, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Geiger M, Sánchez‐Villagra MR, Sherratt E. Cranial shape variation in domestication: A pilot study on the case of rabbits. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:532-541. [PMID: 35934897 PMCID: PMC9804214 DOI: 10.1002/jez.b.23171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
Domestication leads to phenotypic characteristics that have been described to be similar across species. However, this "domestication syndrome" has been subject to debate, related to a lack of evidence for certain characteristics in many species. Here we review diverse literature and provide new data on cranial shape changes due to domestication in the European rabbit (Oryctolagus cuniculus) as a preliminary case study, thus contributing novel evidence to the debate. We quantified cranial shape of 30 wild and domestic rabbits using micro-computed tomography scans and three-dimensional geometric morphometrics. The goal was to test (1) if the domesticates exhibit shorter and broader snouts, smaller teeth, and smaller braincases than their wild counterparts; (2) to what extent allometric scaling is responsible for cranial shape variation; (3) if there is evidence for more variation in the neural crest-derived parts of the cranium compared with those derived of the mesoderm, in accordance with the "neural crest hypothesis." Our own data are consistent with older literature records, suggesting that although there is evidence for some cranial characteristics of the "domestication syndrome" in rabbits, facial length is not reduced. In accordance with the "neural crest hypothesis," we found more shape variation in neural crest versus mesoderm-derived parts of the cranium. Within the domestic group, allometric scaling relationships of the snout, the braincase, and the teeth shed new light on ubiquitous patterns among related taxa. This study-albeit preliminary due to the limited sample size-adds to the growing evidence concerning nonuniform patterns associated with domestication.
Collapse
Affiliation(s)
- Madeleine Geiger
- Paleontological Institute and MuseumUniversity of ZurichZurichSwitzerland,Naturmuseum St.GallenSt.GallenSwitzerland,SWILD, Urban Ecology & Wildlife ResearchZurichSwitzerland
| | | | - Emma Sherratt
- School of Biological SciencesUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
11
|
Sánchez‐Villagra MR. The evolutionary and developmental morphology of domestication in birds and mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:445-446. [DOI: 10.1002/jez.b.23181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
|
12
|
Lesch R, Kitchener AC, Hantke G, Kotrschal K, Fitch WT. Cranial volume and palate length of cats, Felis spp., under domestication, hybridization and in wild populations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210477. [PMID: 35116138 PMCID: PMC8790375 DOI: 10.1098/rsos.210477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/21/2021] [Indexed: 05/07/2023]
Abstract
Reduced brain size, compared with wild individuals, is argued to be a key characteristic of domesticated mammal species, and often cited as a key component of a putative 'domestication syndrome'. However, brain size comparisons are often based on old, inaccessible literature and in some cases drew comparisons between domestic animals and wild species that are no longer thought to represent the true progenitor species of the domestic species in question. Here we replicate studies on cranial volumes in domestic cats that were published in the 1960s and 1970s, comparing wildcats, domestic cats and their hybrids. Our data indicate that domestic cats indeed, have smaller cranial volumes (implying smaller brains) relative to both European wildcats (Felis silvestris) and the wild ancestors of domestic cats, the African wildcats (Felis lybica), verifying older results. We further found that hybrids of domestic cats and European wildcats have cranial volumes that cluster between those of the two parent species. Apart from replicating these studies, we also present new data on palate length in Felis cat skulls, showing that domestic cat palates are shorter than those of European wildcats but longer than those of African wildcats. Our data are relevant to current discussions of the causes and consequences of the 'domestication syndrome' in domesticated mammals.
Collapse
Affiliation(s)
- Raffaela Lesch
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Institute of Animal Welfare Science, University for Veterinary Medicine, Vienna, Austria
| | | | - Georg Hantke
- Department Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Kurt Kotrschal
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|