1
|
Cragun D, Victoria L, Bradbury AR, Dean M, Hamilton JG, Katz ML, Rahm AK, Mack JW, Resnicow K, Kaphingst KA. Applying theories, models, and frameworks to help genetic counselors and students achieve clinical and professional goals. J Genet Couns 2024. [PMID: 39462976 DOI: 10.1002/jgc4.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Some genetic counselors (GCs) may find theories, models, and frameworks (TMFs) useful in clinical skills selection and when reflecting on or evaluating genetic counseling practice. This paper aims to demonstrate how TMFs can be used to postulate how different skills may impact patients'/clients' decisions, behaviors, and outcomes and consider how multiple TMFs can inform the use of various skills or strategies to achieve different goals. Additionally, we provide examples of TMFs that may help GCs in nonclinical aspects of their work, such as implementing and evaluating new interventions or service delivery models. To guide the selection of appropriate TMFs, we provide a set of questions to consider and include examples of skills and approaches that align with different TMFs. While TMFs provide a structured approach and valuable guidance that may help advance genetic counseling practice, they have certain limitations. Additional research is necessary to determine the effectiveness of using TMFs to guide clinical practice and improve patient/client outcomes.
Collapse
Affiliation(s)
- Deborah Cragun
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Lindsey Victoria
- Labcorp Women's Health and Genetics, Charlotte, North Carolina, USA
| | - Angela R Bradbury
- Abramson Cancer Center and Division of Hematology-Oncology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marleah Dean
- Department of Communication, University of South Florida, Tampa, Florida, USA
- Health Outcomes & Behavior Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jada G Hamilton
- Department of Psychiatry & Behavioral Sciences, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mira L Katz
- Division of Health Behavior and Health Promotion, College of Public Health and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Jennifer W Mack
- Department of Pediatric Oncology and Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ken Resnicow
- University of Michigan School of Public Health, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly A Kaphingst
- Department of Communication and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Asatryan B, Murray B, Tadros R, Rieder M, Shah RA, Sharaf Dabbagh G, Landstrom AP, Dobner S, Munroe PB, Haggerty CM, Medeiros-Domingo A, Owens AT, Kullo IJ, Semsarian C, Reichlin T, Barth AS, Roden DM, James CA, Ware JS, Chahal CAA. Promise and Peril of a Genotype-First Approach to Mendelian Cardiovascular Disease. J Am Heart Assoc 2024:e033557. [PMID: 39424414 DOI: 10.1161/jaha.123.033557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Brittney Murray
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Rafik Tadros
- Cardiovascular Genetics Centre Montréal Heart Institute Montréal Québec Canada
| | - Marina Rieder
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Ravi A Shah
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust London United Kingdom
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases WellSpan Health Lancaster PA USA
- Division of Cardiovascular Medicine University of Michigan Ann Arbor MI USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, and Department of Cell Biology Duke University School of Medicine Durham NC USA
| | - Stephan Dobner
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Patricia B Munroe
- NIHR Barts Biomedical Research Centre William Harvey Research Institute, Queen Mary University of London London United Kingdom
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics Heart Institute, Geisinger Danville PA USA
| | | | - Anjali T Owens
- Center for Inherited Cardiovascular Disease, Cardiovascular Division University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Tobias Reichlin
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Andreas S Barth
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Dan M Roden
- Department of Medicine, Pharmacology, and Biomedical Informatics Vanderbilt University Medical Center Nashville TN USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - James S Ware
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London London United Kingdom
- Royal Brompton & Harefield Hospitals Guy's and St. Thomas' NHS Foundation Trust London United Kingdom
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases WellSpan Health Lancaster PA USA
- NIHR Barts Biomedical Research Centre William Harvey Research Institute, Queen Mary University of London London United Kingdom
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
- Barts Heart Centre St Bartholomew's Hospital, Barts Health NHS Trust London West Smithfield United Kingdom
| |
Collapse
|
3
|
Lampert R, Chung EH, Ackerman MJ, Arroyo AR, Darden D, Deo R, Dolan J, Etheridge SP, Gray BR, Harmon KG, James CA, Kim JH, Krahn AD, La Gerche A, Link MS, MacIntyre C, Mont L, Salerno JC, Shah MJ. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024; 21:e151-e252. [PMID: 38763377 DOI: 10.1016/j.hrthm.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Youth and adult participation in sports continues to increase, and athletes may be diagnosed with potentially arrhythmogenic cardiac conditions. This international multidisciplinary document is intended to guide electrophysiologists, sports cardiologists, and associated health care team members in the diagnosis, treatment, and management of arrhythmic conditions in the athlete with the goal of facilitating return to sport and avoiding the harm caused by restriction. Expert, disease-specific risk assessment in the context of athlete symptoms and diagnoses is emphasized throughout the document. After appropriate risk assessment, management of arrhythmias geared toward return to play when possible is addressed. Other topics include shared decision-making and emergency action planning. The goal of this document is to provide evidence-based recommendations impacting all areas in the care of athletes with arrhythmic conditions. Areas in need of further study are also discussed.
Collapse
Affiliation(s)
- Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut
| | - Eugene H Chung
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Rajat Deo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joe Dolan
- University of Utah, Salt Lake City, Utah
| | | | - Belinda R Gray
- University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | | - Andrew D Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andre La Gerche
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jack C Salerno
- University of Washington School of Medicine, Seattle, Washington
| | - Maully J Shah
- Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024:CJ-23-0926. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
5
|
Broadbridge E, Roter DL, Persky S, Erby LH. Measuring the therapeutic bond in genetic counseling: Testing measurement error in the bond subscale of the Working Alliance Inventory. J Genet Couns 2024:10.1002/jgc4.1844. [PMID: 38308411 PMCID: PMC11294495 DOI: 10.1002/jgc4.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024]
Abstract
The therapeutic relationship is a key component of successful genetic counseling. In psychotherapy, a strong therapeutic relationship can improve patient health outcomes and a poor relationship can worsen psychological functioning. Investigation of the therapeutic relationship in genetic counseling has shown evidence for a similar pattern. Reliable measurement of the therapeutic relationship is necessary for consistency across studies in the genetic counseling context. One measure that has been adapted for use in genetic counseling is the Working Alliance Inventory (WAI). However, there have been no studies of the factor structure or item-level method bias analyses for the genetic counseling-adapted version of the WAI. The goal of this study was to test the factor structure of the WAI observer version (WAI-O) bond subscale and assess method bias in a genetic counseling context. We hypothesized that differences in factor structures would exist for items that were positively (n = 9) versus negatively (n = 3) worded (reverse coded). Secondary data analysis was performed on two data sets that utilized the WAI-O in genetic counseling contexts. Data set 1 used simulated genetic counseling sessions that were judged by analog clients recruited through crowdsourcing platforms (N = 861). Data set 2 was conducted with genetic counseling clients, and sessions were evaluated by a research team (N = 120). Principal axis factor analysis with oblique oblimin rotation supported a two-factor solution for the WAI-O bond subscale across data sets. Items factored based on wording, with the positively worded items loading together and the negatively worded items loading on the second factor. Confirmatory factor analyses supported the removal of all negatively worded items from the instrument across data sets. Results suggest that the negatively worded items on the WAI-O may be capturing a construct inconsistent with the positively worded items and support rewording and/or excluding them from use for a more reliable measure of the therapeutic bond.
Collapse
Affiliation(s)
- Elizabeth Broadbridge
- Department of Communication, Rutgers University, New Brunswick, NJ
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD
- Department of Health Behavior and Society, Johns Hopkins University, Baltimore, MD
| | - Debra L. Roter
- Department of Health Behavior and Society, Johns Hopkins University, Baltimore, MD
| | - Susan Persky
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD
| | - Lori H. Erby
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD
- Department of Health Behavior and Society, Johns Hopkins University, Baltimore, MD
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD
| |
Collapse
|
6
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 440] [Impact Index Per Article: 440.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
7
|
Christian S, Dzwiniel T. Principles of Genetic Counseling in Inherited Heart Conditions. Card Electrophysiol Clin 2023; 15:229-239. [PMID: 37558294 DOI: 10.1016/j.ccep.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Cardiac genetic counseling is the process of helping individuals adapt to a personal diagnosis or family history of an inherited heart condition. The process is shown to benefit patients and includes specialized skills, such as counseling children and interpreting complex genetic results. Emerging areas include: evolving service delivery models for caring for patients and communicating risk to relatives, new areas of need including postmortem molecular autopsy, and new populations of individuals found to carry a likely pathogenic/pathogenic cardiac variant identified through genomic screening. This article provides an overview of the cardiac genetic counseling process and evolving areas in the field.
Collapse
Affiliation(s)
- Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Morales A, Goehringer J, Sanoudou D. Evolving cardiovascular genetic counseling needs in the era of precision medicine. Front Cardiovasc Med 2023; 10:1161029. [PMID: 37424912 PMCID: PMC10325680 DOI: 10.3389/fcvm.2023.1161029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
In the era of Precision Medicine the approach to disease diagnosis, treatment, and prevention is being transformed across medical specialties, including Cardiology, and increasingly involves genomics approaches. The American Heart Association endorses genetic counseling as an essential component in the successful delivery of cardiovascular genetics care. However, with the dramatic increase in the number of available cardiogenetic tests, the demand, and the test result complexity, there is a need not only for a greater number of genetic counselors but more importantly, for highly specialized cardiovascular genetic counselors. Consequently, there is a pressing need for advanced cardiovascular genetic counseling training, along with innovative online services, telemedicine, and patient-facing digital tools, as the most effective way forward. The speed of implementation of these reforms will be of essence in the translation of scientific advancements into measurable benefits for patients with heritable cardiovascular disease and their families.
Collapse
Affiliation(s)
- Ana Morales
- Translational Health Sciences Program, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, ‘Attikon’ Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
Davies B, Allan KS, Carroll SL, Gibbs K, Roberts JD, MacIntyre C, Steinberg C, Tadros R, Dorian P, Healey JS, Gardner M, Laksman ZWM, Krahn AD, Fournier A, Seifer C, Lauck SB. Perceived self-efficacy and empowerment in patients at increased risk of sudden cardiac arrest. Front Cardiovasc Med 2023; 10:955060. [PMID: 37255708 PMCID: PMC10225561 DOI: 10.3389/fcvm.2023.955060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 03/10/2023] [Indexed: 06/01/2023] Open
Abstract
Background The role of multidisciplinary clinics for psychosocial care is increasingly recognized for those living with inherited cardiac conditions (ICC). In Canada, access to healthcare providers differ between clinics. Little is known about the relationship between access to specialty care and a patient's ability to cope with, and manage their condition. Methods We leveraged the Hearts in Rhythm Organization (HiRO) to conduct a cross-sectional, community-based survey of individuals with ICC and their family members. We aimed to describe access to services, and explore the relationships between participants' characteristics, cardiac history and self-reported health status and self-efficacy (GSE: General Self-Efficacy Scale) and empowerment (GCOS-24: Genetic Counseling Outcome Scale). Results We collected 235 responses from Canadian participants in 10 provinces and territories. Overall, 63% of participants reported involvement of a genetic counsellor in their care. Access to genetic testing was associated with greater empowerment [mean GCOS-24: 121.14 (SD = 20.53) vs. 105.68 (SD = 21.69); p = 0.004]. Uncertain genetic test results were associated with lower perceived self-efficacy (mean GSE: uncertain = 28.85 vs. positive = 33.16, negative = 34.13; p = 0.01). Low global mental health scores correlated with both lower perceived self-efficacy and empowerment scores, with only 11% of affected participants reporting involvement of psychology services in their care. Conclusion Differences in resource accessibility, clinical history and self-reported health status impact the perceived self-efficacy and empowerment of patients with ICC. Future research evaluating interventions to improve patient outcomes is recommended.
Collapse
Affiliation(s)
- Brianna Davies
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Katherine S. Allan
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Sandra L. Carroll
- School of Nursing, Faculty of Health Science, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Karen Gibbs
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Jason D. Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department ofMedicine, Western University, London, ON, Canada
| | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec City, QC, Canada
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Paul Dorian
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Jeff S. Healey
- School of Nursing, Faculty of Health Science, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Zachary W. M. Laksman
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Andrew D. Krahn
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, Montreal,QC, Canada
| | - Colette Seifer
- Department of Internal Medicine, St Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Sandra B. Lauck
- Centre for Cardiovascular Innovation, St. Paul’s and Vancouver General Hospitals, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|