1
|
Complexing the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T with Cationic Nanoparticles Enhances Viral Infection and Spread in Prostate and Pancreatic Cancer Models. Int J Mol Sci 2022; 23:ijms23168884. [PMID: 36012152 PMCID: PMC9408166 DOI: 10.3390/ijms23168884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAd) can be employed to efficiently eliminate cancer cells through multiple mechanisms of action including cell lysis and immune activation. Our OAds, AdΔΔ and Ad-3∆-A20T, selectively infect, replicate in, and kill adenocarcinoma cells with the added benefit of re-sensitising drug-resistant cells in preclinical models. Further modifications are required to enable systemic delivery in patients due to the rapid hepatic elimination and neutralisation by blood factors and antibodies. Here, we show data that support the use of coating OAds with gold nanoparticles (AuNPs) as a possible new method of virus modification to help augment tumour uptake. The pre-incubation of cationic AuNPs with AdΔΔ, Ad-3∆-A20T and wild type adenovirus (Ad5wt) was performed prior to infection of prostate/pancreatic cancer cell lines (22Rv, PC3, Panc04.03, PT45) and a pancreatic stellate cell line (PS1). Levels of viral infection, replication and cell viability were quantified 24–72 h post-infection in the presence and absence of AuNPs. Viral spread was assessed in organotypic cultures. The presence of AuNPs significantly increased the uptake of Ad∆∆, Ad-3∆-A20T and Ad5wt in all the cell lines tested (ranging from 1.5-fold to 40-fold), compared to virus alone, with the greatest uptake observed in PS1, a usually adenovirus-resistant cell line. Pre-coating the AdΔΔ and Ad-3∆-A20T with AuNPs also increased viral replication, leading to enhanced cell killing, with maximal effect in the most virus-insensitive cells (from 1.4-fold to 5-fold). To conclude, the electrostatic association of virus with cationic agents provides a new avenue to increase the dose in tumour lesions and potentially protect the virus from detrimental blood factor binding. Such an approach warrants further investigation for clinical translation.
Collapse
|
2
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Cherepanov SA, Yusubalieva GM, Ruzsics Z, Lipatova AV, Chekhonin VP. Superior infectivity of the fiber chimeric oncolytic adenoviruses Ad5/35 and Ad5/3 over Ad5-delta-24-RGD in primary glioma cultures. Mol Ther Oncolytics 2022; 24:230-248. [PMID: 35071746 PMCID: PMC8761956 DOI: 10.1016/j.omto.2021.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/17/2021] [Indexed: 01/28/2023] Open
Abstract
Ad5-delta-24-RGD is currently the most clinically advanced recombinant adenovirus (rAd) for glioma therapy. We constructed a panel of fiber-modified rAds (Ad5RGD, Ad5/3, Ad5/35, Ad5/3RGD, and Ad5/35RGD, all harboring the delta-24 modification) and compared their infectivity, replication, reproduction, and cytolytic efficacy in human and rodent glioma cell lines and short-term cultures from primary gliomas. In human cells, both Ad5/35-delta-24 and Ad5/3-delta-24 displayed superior infectivity and cytolytic efficacy over Ad5-delta-24-RGD, while Ad5/3-delta-24-RGD and Ad5/35-delta-24-RGD did not show further improvements in efficacy. The expression of the adenoviral receptors/coreceptors CAR, DSG2, and CD46 and the integrins αVβ3/αVβ5 did not predict the relative cytolytic efficacy of the fiber-modified rAds. The cytotoxicity of the fiber-modified rAds in human primary normal cultures of different origins and in primary glioma cultures was comparable, indicating that the delta-24 modification did not confer tumor cell selectivity. We also revealed that CT-2A and GL261 glioma cells might be used as murine cell models for the fiber chimeric rAds in vitro and in vivo. In GL261 tumor-bearing mice, Ad5/35-delta-24, armed with the immune costimulator OX40L as the E2A/DBP-p2A-mOX40L fusion, produced long-term survivors, which were able to reject tumor cells upon rechallenge. Our data underscore the potential of local Ad5/35-delta-24-based immunovirotherapy for glioblastoma treatment.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov Str. 1, 117997 Moscow, Russia
- Corresponding author Aleksei A. Stepanenko, Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia.
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
| | - Sergey A. Cherepanov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the FMBA of Russia, Moscow, Russia
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky Lane 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov Str. 1, 117997 Moscow, Russia
| |
Collapse
|
3
|
A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci Rep 2021; 11:16088. [PMID: 34373477 PMCID: PMC8352973 DOI: 10.1038/s41598-021-94573-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Two-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.
Collapse
|
4
|
Kiyokawa J, Wakimoto H. Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma. Oncolytic Virother 2019; 8:27-37. [PMID: 31750274 PMCID: PMC6817710 DOI: 10.2147/ov.s196403] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
Replication conditional oncolytic human adenovirus has long been considered a promising biological therapeutic to target high-grade gliomas (HGG), a group of essentially lethal primary brain cancer. The last decade has witnessed initiation and some completion of a number of Phase I and II clinical investigations of oncolytic adenovirus for HGG in the US and Europe. Results of these trials in patients are pivotal for not only federal approval but also filling an existing knowledge gap that primarily derives from the stark differences in permissivity to human adenovirus between humans and preclinical mouse models. DNX-2401 (Delta-24-RGD), the current mainstream oncolytic adenovirus with modifications in E1A and the fiber, has been shown to induce impressive objective response and long-term survival (>3 years) in a fraction of patients with recurrent HGG. Responders exhibited initial enlargement of the treated lesions for a few months post treatment, followed by shrinkage and near complete resolution. In accord with preclinical research, post-treatment specimens revealed virus-mediated alteration of the immune tumor microenvironment as evidenced by infiltration of CD8+ T cells and M1-polarized macrophages. These findings are encouraging and together with further information from ongoing studies have a potential to make oncolytic adenovirus a viable option for clinical management of HGG. This review deals with this timely topic; we will describe both preclinical and clinical development of oncolytic adenovirus therapy for HGG, summarize updated knowledge on clinical trials and discuss challenges that the field currently faces.
Collapse
Affiliation(s)
- Juri Kiyokawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Rodents Versus Pig Model for Assessing the Performance of Serotype Chimeric Ad5/3 Oncolytic Adenoviruses. Cancers (Basel) 2019; 11:cancers11020198. [PMID: 30744019 PMCID: PMC6406826 DOI: 10.3390/cancers11020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses (Ad) are promising tools for cancer therapeutics. Most Ad-based therapies utilize species C serotypes, with Adenovirus type 5 (Ad5) most commonly employed. Prior clinical trials demonstrated low efficiency of oncolytic Ad5 vectors, mainly due to the absence of Ad5 primary receptor (Coxsackie and Adenovirus Receptor, CAR) on cancer cells. Engineering serotype chimeric vectors (Ad5/3) to utilize Adenovirus type 3 (Ad3) receptors has greatly improved their oncolytic potential. Clinical translation of these infectivity-enhanced vectors has been challenging due to a lack of replication permissive animal models. In this study, we explored pigs as a model to study the performance of fiber-modified Ad5/3 chimeric vectors. As a control, the Ad5 fiber-unmodified virus was used. We analyzed binding, gene transfer, replication, and cytolytic ability of Ad5 and Ad5/3 in various non-human cell lines (murine, hamster, canine, porcine). Among all tested cell lines only porcine cells supported active binding and replication of Ad5/3. Syrian hamster cells supported Ad5 replication but showed no evidence of productive viral replication after infection with Ad5/3 vectors. Transduction and replication ability of Ad5/3 in porcine cells outperformed Ad5, a phenomenon often observed in human cancer cell lines. Replication of Ad5 and Ad5/3 was subsequently evaluated in vivo in immunocompetent pigs. Quantitative PCR analyses 7 days post infection revealed Ad5 and Ad5/3 DNA and replication-dependent luciferase activity in the swine lungs and spleen indicating active replication in these tissues. These studies demonstrated the flaws in using Syrian hamsters for testing serotype chimeric Ad5/3 vectors. This is the first report to validate the pig as a valuable model for preclinical testing of oncolytic adenoviruses utilizing Adenovirus type 3 receptors. We hope that these data will help to foster the clinical translation of oncolytic adenoviruses including those with Ad3 retargeted tropism.
Collapse
|
6
|
Kim JW, Kane JR, Panek WK, Young JS, Rashidi A, Yu D, Kanojia D, Hasan T, Miska J, Gómez-Lim MA, Ulasov IV, Balyasnikova IV, Ahmed AU, Wainwright DA, Lesniak MS. A Dendritic Cell-Targeted Adenoviral Vector Facilitates Adaptive Immune Response Against Human Glioma Antigen (CMV-IE) and Prolongs Survival in a Human Glioma Tumor Model. Neurotherapeutics 2018; 15:1127-1138. [PMID: 30027430 PMCID: PMC6277295 DOI: 10.1007/s13311-018-0650-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antitumor immunotherapeutic strategies represent an especially promising set of approaches with rapid translational potential considering the dismal clinical context of high-grade gliomas. Dendritic cells (DCs) are the body's most professional antigen-presenting cells, able to recruit and activate T cells to stimulate an adaptive immune response. In this regard, specific loading of tumor-specific antigen onto dendritic cells potentially represents one of the most advanced strategies to achieve effective antitumor immunization. In this study, we developed a DC-specific adenoviral (Ad) vector, named Ad5scFvDEC205FF, targeting the DC surface receptor, DEC205. In vitro analysis shows that 60% of DCs was infected by this vector while the infectivity of other control adenoviral vectors was less than 10%, demonstrating superior infectivity on DCs. Moreover, an average of 14% of DCs were infected by Ad5scFvDEC205FF-GFP, while less than 3% of non-DCs were infected following in vivo administration, demonstrating highly selective in vivo DC infection. Importantly, vaccination with this vehicle expressing human glioma-specific antigen, Ad5scFvDEC205FF-CMV-IE, shows a prolonged survival benefit in GL261CMV-IE-implanted murine glioma models (p < 0.0007). Furthermore, when rechallenged, cancerous cells were completely rejected. In conclusion, our novel, viral-mediated, DC-based immunization approach has the significant therapeutic potential for patients with high-grade gliomas.
Collapse
Affiliation(s)
- Julius W Kim
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - J Robert Kane
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Jacob S Young
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Dou Yu
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Tanwir Hasan
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Ilya V Ulasov
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, Illinois, 60611, USA.
| |
Collapse
|
7
|
Panek WK, Kane JR, Young JS, Rashidi A, Kim JW, Kanojia D, Lesniak MS. Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget 2017; 8:89391-89405. [PMID: 29179527 PMCID: PMC5687697 DOI: 10.18632/oncotarget.20810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a highly aggressive malignant brain tumor with a poor prognosis and the median survival 14.6 months. Immunomodulatory proteins and oncolytic viruses represent two treatment approaches that have recently been developed for patients with glioblastoma that could extend patient survival and result in better treatment outcomes for patients with this disease. Together, these approaches could potentially augment the treatment efficacy and strength of these anti-tumor therapies. In addition to oncolytic activities, this combinatory approach introduces immunomodulation locally only where cancerous cells are present. This thereby results in the change of the tumor microenvironment from immune-suppressive to immune-vulnerable via activation of cytotoxic T cells or through the removal of glioma cells immune-suppressive capability. This review discusses the strengths and weaknesses of adenoviral oncolytic therapy, and highlights the genetic modifications that result in more effective and targeted viral agents. Additionally, the mechanism of action of immune-activating agents is described and the results of previous clinical trials utilizing these treatments in other solid tumors are reviewed. The feasibility, synergy, and limitations for treatments that combine these two approaches are outlined and areas for which more work is needed are considered.
Collapse
Affiliation(s)
- Wojciech K Panek
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - J Robert Kane
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob S Young
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Julius W Kim
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Ahmad Z, Kratzke RA. Novel oncolytic viral therapies in patients with thoracic malignancies. Oncolytic Virother 2016; 6:1-9. [PMID: 28053943 PMCID: PMC5189707 DOI: 10.2147/ov.s116012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy is the use of replication-competent viruses to treat malignancies. The potential of oncolytic virotherapy as an approach to cancer therapy is based on historical evidence that certain viral infections can cause spontaneous remission of both hematologic and solid tumor malignancies. Oncolytic virotherapy may eliminate cancer cells through either direct oncolysis of infected tumor cells or indirect immune-mediated oncolysis of uninfected tumor cells. Recent advances in oncolytic virotherapy include the development of a wide variety of genetically attenuated RNA viruses with precise cellular tropism and the identification of cell-surface receptors that facilitate viral transfer to the tissue of interest. Current research is also focused on targeting metastatic disease by sustaining the release of progeny viruses from infected tumor cells and understanding indirect tumor cell killing through immune-mediated mechanisms of virotherapy. The purpose of this review is to critically evaluate recent evidence on the clinical development of tissue-specific viruses capable of targeting tumor cells and eliciting secondary immune responses in lung cancers and mesothelioma.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
9
|
Kim JW, Auffinger B, Spencer DA, Miska J, Chang AL, Kane JR, Young JS, Kanojia D, Qiao J, Mann JF, Zhang L, Wu M, Ahmed AU, Aboody KS, Strong TV, Hébert CD, Lesniak MS. Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters. J Transl Med 2016; 14:134. [PMID: 27184224 PMCID: PMC4868110 DOI: 10.1186/s12967-016-0895-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/05/2016] [Indexed: 11/11/2022] Open
Abstract
Background CRAd-S-pk7 is a conditionally replicative oncolytic adenoviral vector that contains a survivin promoter and a pk7 fiber modification that confer tumor-specific transcriptional targeting and preferential replication in glioma while sparing the surrounding normal brain parenchyma. Methods This IND-enabling study performed under GLP conditions evaluated the toxicity and biodistribution of CRAd-S-pk7 administered as a single intracerebral dose to Syrian hamsters, a permissive model of adenoviral replication. Two hundred and forty animals were stereotactically administered either vehicle (n = 60) or CRAd-S-pk7 at 2.5 × 107, 2.5 × 108, or 2.5 × 109 viral particles (vp)/animal (each n = 60) on day 1. The animals were closely monitored for toxicology evaluation, assessment of viral distribution, and immunogenicity of CRAd-S-pk7. Results Changes in hematology, clinical chemistry, and coagulation parameters were minor and transient, and consistent with the inflammatory changes observed microscopically. These changes were considered to be of little toxicological significance. The vector remained localized primarily in the brain and to some degree in the tissues at the incision site. Low levels of vector DNA were detected in other tissues in a few animals suggesting systemic circulation of the virus. Viral DNA was detected in brains of hamsters for up to 62 days. However, microscopic changes and virus-related toxicity to the central nervous system were considered minor and decreased in incidence and severity over time. Such changes are not uncommon in studies using adenoviral vectors. Conclusion This study provides safety and toxicology data justifying a clinical trial of CRAd-S-pk7 loaded in FDA-approved HB1.F3.CD neural stem cell carriers administered at the tumor resection bed in humans with recurrent malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julius Woongki Kim
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Brenda Auffinger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Drew A Spencer
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Alan L Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Joshua Robert Kane
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jacob S Young
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jian Qiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jill F Mann
- Southern Research Institute, Birmingham, AL, USA
| | - Lingjiao Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | | | | | | | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Ulasov IV, Shah N, Kaverina NV, Lee H, Lin B, Lieber A, Kadagidze ZG, Yoon JG, Schroeder B, Hothi P, Ghosh D, Baryshnikov AY, Cobbs CS. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget 2016; 6:3977-87. [PMID: 25738357 PMCID: PMC4414167 DOI: 10.18632/oncotarget.2897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA.,Institute of Experimental Diagnostic and Biotherapy, NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478
| | - Nameeta Shah
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Natalya V Kaverina
- NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478.,Current address: Division of Nephrology, University of Washington, Seattle, 98109, USA
| | - Hwahyang Lee
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Biaoyang Lin
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Andre Lieber
- University of Washington, Seattle, WA, 98122, USA
| | | | - Jae-Guen Yoon
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kim JW, Young JS, Solomaha E, Kanojia D, Lesniak MS, Balyasnikova IV. A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors. Sci Rep 2015; 5:18133. [PMID: 26656559 PMCID: PMC4677343 DOI: 10.1038/srep18133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10−9 M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies.
Collapse
Affiliation(s)
- Julius W Kim
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Solomaha
- Biophysics Core Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
12
|
Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Morshed RA, Miska J, Ahmed AU, Balyasnikova IV, Han Y, Zhang L, Curiel DT, Lesniak MS. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Hum Gene Ther 2015; 26:635-46. [PMID: 26058317 DOI: 10.1089/hum.2015.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.
Collapse
Affiliation(s)
- Julius W Kim
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - J Robert Kane
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jacob S Young
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Alan L Chang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Deepak Kanojia
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Ramin A Morshed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Jason Miska
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Atique U Ahmed
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Irina V Balyasnikova
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Yu Han
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - Lingjiao Zhang
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| | - David T Curiel
- 2 Cancer Biology Division, Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Maciej S Lesniak
- 1 Brain Tumor Center, University of Chicago Pritzker School of Medicine , Chicago, Illinois
| |
Collapse
|
13
|
Kim JW, Kane JR, Young JS, Chang AL, Kanojia D, Qian S, Spencer DA, Ahmed AU, Lesniak MS. Neural stem cell-mediated delivery of oncolytic adenovirus. ACTA ACUST UNITED AC 2015; 85:13.11.1-13.11.9. [PMID: 25827347 DOI: 10.1002/0471142905.hg1311s85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of stem cells (SCs) as carriers for therapeutic agents has now progressed to early clinical trials. These clinical trials exploring SC-mediated delivery of oncolytic adenoviruses will commence in the near future, hopefully yielding meritorious results that can provoke further scientific inquiry. Preclinical animal studies have demonstrated that SCs can be successfully loaded with conditionally-replicative adenoviruses and delivered to the tumor, whereupon they may evoke pronounced therapeutic efficacy. In this protocol, we describe the maintenance of SCs, provide an analysis of optimal adenoviral titers for SC loading, and evaluate the optimized viral loading on SCs.
Collapse
Affiliation(s)
- Julius W Kim
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - J Robert Kane
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Jacob S Young
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Alan L Chang
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Deepak Kanojia
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Shuo Qian
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Drew A Spencer
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Atique U Ahmed
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| | - Maciej S Lesniak
- The Brain Tumor Center, University of Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Abstract
Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and negative sides of the virotherapy approach. Here we present a detailed overview of the glioma virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting clinical efficacy of GBM virotherapy treatment.
Collapse
Affiliation(s)
- I.V. Ulasov
- Swedish Medical Center, Center for Advanced Brain Tumor Treatment, 550 17th Avenue, James Tower, Suite 570, Seattle, WA 98122, USA
- Institute of Experimental Diagnostic and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 115478, Russia
- Corresponding author. Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, James Tower, Suite 570, Seattle, WA 98122, USA. Tel.: +1 206 991 2053; fax: +1 206 834 2608.
| | - A.V. Borovjagin
- Institute of Oral Health Research, University of Alabama at Birmingham School of Dentistry, 1919 7th Ave South, Birmingham, AL, 35294, USA
| | - B.A. Schroeder
- Michigan State University College of Medicine, Grand Rapids, MI, 49503, USA
| | - A.Y. Baryshnikov
- Institute of Experimental Diagnostic and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 115478, Russia
| |
Collapse
|
15
|
Koski A, Karli E, Kipar A, Escutenaire S, Kanerva A, Hemminki A. Mutation of the fiber shaft heparan sulphate binding site of a 5/3 chimeric adenovirus reduces liver tropism. PLoS One 2013; 8:e60032. [PMID: 23585829 PMCID: PMC3621953 DOI: 10.1371/journal.pone.0060032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Natural tropism to the liver is a major obstacle in systemic delivery of adenoviruses in cancer gene therapy. Adenovirus binding to soluble coagulation factors and to cellular heparan sulphate proteoglycans via the fiber shaft KKTK domain are suggested to cause liver tropism. Serotype 5 adenovirus constructs with mutated KKTK regions exhibit liver detargeting, but they also transduce tumors less efficiently, possibly due to altered fiber conformation. We constructed Ad5/3lucS*, a 5/3 chimeric adenovirus with a mutated KKTK region. The fiber knob swap was hypothesized to facilitate tumor transduction. This construct was studied with or without additional coagulation factor ablation. Ad5/3lucS* exhibited significantly reduced transduction of human hepatic cells in vitro and mouse livers in vivo. Combination of coagulation factor ablation by warfarinization to Ad5/3lucS* seemed to further enhance liver detargeting. Cancer cell transduction by Ad5/3lucS* was retained in vitro. In vivo, viral particle accumulation in M4A4-LM3 xenograft tumors was comparable to controls, but Ad5/3lucS* transgene expression was nearly abolished. Coagulation factor ablation did not affect tumor transduction. These studies set the stage for further investigations into the effects of the KKTK mutation and coagulation factor ablation in the context of 5/3 serotype chimerism. Of note, the putative disconnect between tumor transduction and transgene expression could prove useful in further understanding of adenovirus biology.
Collapse
Affiliation(s)
- Anniina Koski
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Eerika Karli
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sophie Escutenaire
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Matsui H, Sakurai F, Katayama K, Abe Y, Machitani M, Kurachi S, Tachibana M, Mizuguchi H. A targeted adenovirus vector displaying a human fibronectin type III domain-based monobody in a fiber protein. Biomaterials 2013; 34:4191-4201. [PMID: 23473963 DOI: 10.1016/j.biomaterials.2013.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/17/2013] [Indexed: 11/17/2022]
Abstract
A major drawback of adenovirus (Ad) vectors is their nonspecific transduction into various types of cells or tissue after in vivo application, which might lead to unexpected toxicity and tissue damage. To overcome this problem, we developed a fiber-mutant Ad vector displaying a monobody specific for epidermal growth factor receptor (EGFR) or vascular endothelial growth factor receptor 2 (VEGFR2) in the C-terminus of the knobless fiber protein derived from T4 phage fibritin. A monobody, which is a single domain antibody mimic based on the tenth human fibronectin type III domain scaffold with a structure similar to the variable domains of antibodies, would be suitable as a targeting molecule for display on the Ad capsid proteins because of its highly stable structure even under reducing conditions and low molecular weight (approximately 10 kDa). Surface plasmon resonance (SPR) analysis revealed that the monobody-displaying Ad vector specifically bound to the targeted molecules, leading to significant increases in cellular binding and transduction efficiencies in the targeted cells. Transduction with the monobody-displaying Ad vectors was significantly inhibited in the presence of the Fc-chimera protein of EGFR and VEGFR2. This monobody-displaying Ad vector would be a crucial resource for targeted gene therapy.
Collapse
Affiliation(s)
- Hayato Matsui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research (Pharmaceutical Proteomics), National Institute of Biomedical Innovation, Osaka, Japan
| | - Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinnosuke Kurachi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Osaka, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
17
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol Ther 2012; 20:1821-30. [PMID: 22871667 DOI: 10.1038/mt.2012.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Twenty-five patients with chemotherapy refractory cancer were treated with a fully serotype 3-based oncolytic adenovirus Ad3-hTERT-E1A. In mice, Ad3 induced higher amounts of cytokines but less liver damage than Ad5 or Ad5/3. In humans, the only grade 3 adverse reactions were self-limiting cytopenias and generally the safety profile resembled Ad5-based oncolytic viruses. Patients that had been previously treated with Ad5 viruses presented longer lasting lymphocytopenia but no median increase in Ad3-specific T-cells in blood, suggesting immunological activity against antigens other than Ad3 hexon. Frequent alterations in antitumor T-cells in blood were seen regardless of previous virus exposure. Neutralizing antibodies against Ad3 increased in all patients, whereas Ad5 neutralizing antibodies remained stable. Treatment with Ad3-hTERT-E1A resulted in re-emergence of Ad5 viruses from previous treatments into blood and vice versa. Signs of possible efficacy were seen in 11/15 (73%) patients evaluable for tumor markers, four of which were treated only intravenously. Particularly promising results were seen in breast cancer patients and especially those receiving concomitant trastuzumab. Taken together, Ad3-hTERT-E1A seems safe for further clinical testing or development of armed versions. It offers an immunologically attractive alternative, with possible pharmacodynamic differences and a different receptor compared to Ad5.
Collapse
|
19
|
Yun J, Sonabend AM, Ulasov IV, Kim DH, Rozhkova EA, Novosad V, Dashnaw S, Brown T, Canoll P, Bruce JN, Lesniak MS. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery. J Clin Neurosci 2012; 19:875-80. [PMID: 22516547 DOI: 10.1016/j.jocn.2011.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/10/2011] [Indexed: 12/11/2022]
Abstract
In vivo tracking of gene therapy vectors challenges the investigation and improvement of biodistribution of these agents in the brain, a key feature for their targeting of infiltrative malignant gliomas. The glioma-targeting Ad5/3-cRGD gene therapy vector was covalently bound to super-paramagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPION) to monitor its distribution by MRI. Transduction of labeled and unlabeled vectors was assessed on the U87 glioma cell line and normal human astrocytes (NHA), and was higher in U87 compared to NHA, but was similar between labeled and unlabeled virus. An in vivo study was performed by intracranial subcortical injection of labeled-Ad5/3-cRGD particles into a pig brain. The labeled vector appeared in vivo as a T2-weighted hyperintensity and a T2-gradient echo signal at the injection site, persisting up to 72 hours post-injection. We describe a glioma-targeting vector that is labeled with SPION, thereby allowing for MRI detection with no change in transduction capability.
Collapse
Affiliation(s)
- Jonathan Yun
- Gabriele Bartoli Brain Tumor Laboratory, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
van den Hengel SK, de Vrij J, Uil TG, Lamfers ML, Sillevis Smitt PA, Hoeben RC. Truncating the i-leader open reading frame enhances release of human adenovirus type 5 in glioma cells. Virol J 2011; 8:162. [PMID: 21477385 PMCID: PMC3090740 DOI: 10.1186/1743-422x-8-162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background The survival of glioma patients with the current treatments is poor. Early clinical trails with replicating adenoviruses demonstrated the feasibility and safety of the use of adenoviruses as oncolytic agents. Antitumor efficacy has been moderate due to inefficient virus replication and spread. Previous studies have shown that truncation of the adenovirus i-leader open reading frame enhanced cytopathic activity of HAdV-5 in several tumor cell lines. Here we report the effect of an i-leader mutation on the cytopathic activity in glioma cell lines and in primary high-grade glioma cell cultures. Results A mutation truncating the i-leader open reading frame was created in a molecular clone of replication-competent wild-type HAdV-5 by site-directed mutagenesis. We analyzed the cytopathic activity of this RL-07 mutant virus. A cell-viability assay showed increased cytopathic activity of the RL-07 mutant virus on U251 and SNB19 glioma cell lines. The plaque sizes of RL-07 on U251 monolayers were seven times larger than those of isogenic control viruses. Similarly, the cytopathic activity of the RL-07 viruses was strongly increased in six primary high-grade glioma cell cultures. In glioma cell lines the RL-07 virus was found to be released earlier into the culture medium. This was not due to enhanced viral protein synthesis, as was evident from equivalent E1A, Fiber and Adenovirus Death Protein amounts, nor to higher virus yields. Conclusion The cytopathic activity of replicating adenovirus in glioblastoma cells is increased by truncating the i-leader open reading frame. Such mutations may help enhancing the antitumor cytopathic efficacy of oncolytic adenoviruses in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Sanne K van den Hengel
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Sengupta S, Ulasov IV, Thaci B, Ahmed AU, Lesniak MS. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells. PLoS One 2011; 6:e18091. [PMID: 21464908 PMCID: PMC3065494 DOI: 10.1371/journal.pone.0018091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/20/2011] [Indexed: 01/01/2023] Open
Abstract
Background Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45% of splenic T cells were transduced by Ad-RGD. Conclusions Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.
Collapse
Affiliation(s)
- Sadhak Sengupta
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya V. Ulasov
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Bart Thaci
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Atique U. Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang D, Liu S, Mao Q, Zhao J, Xia H. A novel vector for a rapid generation of fiber-mutant adenovirus based on one step ligation and quick screening of positive clones. J Biotechnol 2011; 152:72-6. [DOI: 10.1016/j.jbiotec.2011.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/26/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
|
23
|
Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy. Biochem J 2010; 431:321-36. [DOI: 10.1042/bj20100766] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human Ads (adenoviruses) have been extensively utilized for the development of vectors for gene transfer, as they infect many cell types and do not integrate their genome into host-cell chromosomes. In addition, they have been widely studied as cytolytic viruses, termed oncolytic adenoviruses in cancer therapy. Ads are non-enveloped viruses with a linear double-stranded DNA genome of 30–38 kb which encodes 30–40 genes. At least 52 human Ad serotypes have been identified and classified into seven species, A–G. The Ad capsid has icosahedral symmetry and is composed of 252 capsomers, of which 240 are located on the facets of the capsid and consist of a trimeric hexon protein and the remaining 12 capsomers, the pentons, are at the vertices and comprise the penton base and projecting fibre protein. The entry of Ads into human cells is a two-step process. In the first step, the fibre protein mediates a primary interaction with the cell, effectively tethering the virus particle to the cell surface via a cellular attachment protein. The penton base then interacts with cell-surface integrins, leading to virus internalization. This interaction of the fibre protein with a number of cell-surface molecules appears to be important in determining the tropism of adenoviruses. Ads from all species, except species B and certain serotypes of species D, utilize CAR (coxsackie and adenovirus receptor) as their primary cellular-attachment protein, whereas most species B Ads use CD46, a complement regulatory protein. Such species-specific differences, as well as adaptations or modifications of Ads required for applications in gene therapy, form the major focus of the present review.
Collapse
|
24
|
Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 2010; 18:1874-84. [PMID: 20664527 DOI: 10.1038/mt.2010.161] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.
Collapse
|
25
|
Nokisalmi P, Pesonen S, Escutenaire S, Särkioja M, Raki M, Cerullo V, Laasonen L, Alemany R, Rojas J, Cascallo M, Guse K, Rajecki M, Kangasniemi L, Haavisto E, Karioja-Kallio A, Hannuksela P, Oksanen M, Kanerva A, Joensuu T, Ahtiainen L, Hemminki A. Oncolytic Adenovirus ICOVIR-7 in Patients with Advanced and Refractory Solid Tumors. Clin Cancer Res 2010; 16:3035-43. [DOI: 10.1158/1078-0432.ccr-09-3167] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Nakashima H, Kaur B, Chiocca EA. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev 2010; 21:119-26. [PMID: 20226717 DOI: 10.1016/j.cytogfr.2010.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The systemic administration of oncolytic virus (OV) is often inefficient due to clearance of the virus by host defense mechanism and spurious targeting of non-cancer tissues through the bloodstream. Cell mediated OV delivery could hide the virus from host defenses and direct them toward tumors: Mesenchymal and neural stem cells have been described to possess tumor-homing ability as well as the capacity to deliver OVs. In this review, we will focus on approaches where OV and carrier cells are utilized for cancer therapy. Effective cellular internalization and replication of OVs need to occur both in cancer and carrier cells. We thus will discuss the current challenges faced by the use of OV delivery via carrier cells.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center, Columbus, OH 43210, United States
| | | | | |
Collapse
|
27
|
Nandi S, Ulasov IV, Rolle CE, Han Y, Lesniak MS. A chimeric adenovirus with an Ad 3 fiber knob modification augments glioma virotherapy. J Gene Med 2010; 11:1005-11. [PMID: 19688792 DOI: 10.1002/jgm.1385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malignant gliomas remain refractory to treatment despite advances in chemotherapy and surgical techniques. Viral vectors developed to treat gliomas have had low transduction capabilities, limiting their use. Gliomas over-express CD46, CD80, and CD86, all of which bind adenovirus serotype 3. METHODS To increase the infectivity and replication of oncolytic vectors in malignant brain tumors, we created a conditionally replicating adenovirus, CRAd-Survivin-5/3, which contains a survivin promoter-driving E1A and a chimeric fiber consisting of adenovirus serotype 3 knob. RESULTS In vitro, this modified CRAd showed ten- to 100-fold increased cytotoxicity against glioma cells. Ex vivo analysis of primary glioblastoma multiforme samples infected with CRAd-Survivin-5/3 showed an increase in cytotoxicity of 20-30% compared to adenovirus wild-type (AdWT). In normal human astrocytes and normal brain tissues, CRAd-Survivin-5/3 exhibited 30-40% and 10-15% lower cytotoxicity than AdWT, respectively. In an intracranial xenograft model of glioma, this oncolytic virus increased tumor-free survival and overall lifespan by 50% compared to controls (p < 0.05). CONCLUSIONS CRAd-Survivin-5/3 represents an attractive alternative to existing vectors and should be tested further in the pre-clinical setting.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
28
|
Kranzler J, Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Stem cells as delivery vehicles for oncolytic adenoviral virotherapy. Curr Gene Ther 2010; 9:389-95. [PMID: 19860653 DOI: 10.2174/156652309789753347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme is the most common primary intracranial tumor in humans. Despite continued advances in cancer therapy, the outcome for patients diagnosed with this disease remains bleak. Novel treatments involving the use of conditionally replicating adenoviruses (CRAds) to target malignant brain tumors have undergone extensive research and proven to be a promising mode of glioblastoma therapy. CRAds are genetically manipulated to replicate within tumor cells, exhibiting a high degree of infectivity, cytotoxicity, and transgene expression. While the use of various CRAds has been deemed safe for intracranial injection in preclinical trials, a significant therapeutic effect has yet to be seen in patients. This shortcoming stems from the distribution limitations involved with local delivery of virolytic agents. To enhance this modality of treatment, stem cells have been explored as cellular vehicles in virotherapy applications, given that they possess an intrinsic tropism for malignant brain tumors. Stem cell loaded CRAd delivery offers a more specific and effective method of targeting disseminated tumor cells and forms the basis for this review.
Collapse
Affiliation(s)
- Justin Kranzler
- The Brain Tumor Center, The University of Chicago, Pritzker School of Medicine, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The University of Chicago, The Brain Tumor Center, Chicago, Illinois 60637, USA
| | | |
Collapse
|
30
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
31
|
CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma. Cancer Gene Ther 2009; 16:794-805. [PMID: 19363468 DOI: 10.1038/cgt.2009.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malignant forms of glioma, the most common primary brain tumors, remain poorly responsive to multimodality therapeutic interventions, including chemotherapy. Suppressed apoptosis and extraordinary invasiveness are important distinctive features that contribute to the malignant phenotype of glioma. We have developed the vascular endothelial growth factor receptor 1 (VEGFR-1/flt-1) conditional replicating adenoviral vector (CRAdRGDflt-IL24) encoding the interleukin-24 (IL-24) gene. We investigated whether a combination of CRAdRGDflt-IL24-mediated oncolytic virotherapy and chemotherapy using temozolomide (TMZ) produces increased cytotoxicity against human glioma cells in comparison with these agents alone. Combination of CRAdRGDflt-IL24 and TMZ significantly enhanced cytotoxicity in vitro, inhibited D54MG tumor growth and prolonged survival of mice harboring intracranial human glioma xenografts in comparison with CRAdRGDflt-IL24 or TMZ alone. These data indicate that combined treatment with CRAdRGDflt-IL24-mediated oncolytic virotherapy and TMZ chemotherapy provides a promising approach for glioma therapy.
Collapse
|
32
|
Lenaerts L, McVey JH, Baker AH, Denby L, Nicklin S, Verbeken E, Naesens L. Mouse adenovirus type 1 and human adenovirus type 5 differ in endothelial cell tropism and liver targeting. J Gene Med 2009; 11:119-27. [PMID: 19065608 DOI: 10.1002/jgm.1283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND For adenovirus vectors derived from human serotype 5 (Ad5), the efficiency and safety after intravascular delivery is hindered by their sequestration in nontarget tissues, predominantly the liver. The latter is largely dictated by adenovirus binding to blood coagulation zymogens. In addition, several target cells, such as endothelial and smooth muscle cells, are difficult to transduce by Ad5 due to the low expression of the primary coxsackie-adenovirus receptor (CAR). Therefore, alternative adenovirus serotypes are being explored. METHODS In the present study, we assessed the tropism of mouse adenovirus type 1 (MAV-1), a nonhuman adenovirus for which cellular attachment is CAR-independent. RESULTS The typical replication of MAV-1 in endothelial cells as observed in vivo was not reflected in elevated attachment to primary and continuous endothelial cells in cell culture. Remarkably, MAV-1 displayed a higher affinity for primary human smooth muscle cells than recombinant Ad5 (rAd5). Attachment of MAV-1 to human and mouse cells of hepatocyte origin was not altered by physiological concentrations of human coagulation factor XI (FXI) or the vitamin K-dependent FIX, FX and FVII. By contrast, attachment of Ad5-derived vectors was enhanced at least eight-fold by FX. Using surface plasmon resonance, MAV-1 was shown to directly associate with human FX and murine FX and FIX but, opposite to rAd5, this interaction did not lead to enhanced cellular attachment. In intravenously injected severe combined immunodeficiency mice, distribution of MAV-1 to the liver was markedly lower than that observed with rAd5. CONCLUSIONS Our data on the tropism of MAV-1 suggest that this virus may find utility in the field of gene therapy.
Collapse
Affiliation(s)
- Liesbeth Lenaerts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Combination of adenoviral virotherapy and temozolomide chemotherapy eradicates malignant glioma through autophagic and apoptotic cell death in vivo. Br J Cancer 2009; 100:1154-64. [PMID: 19277041 PMCID: PMC2664399 DOI: 10.1038/sj.bjc.6604969] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Conditionally replicative adenoviruses (CRAds) represent a novel treatment strategy for malignant glioma. Recent studies suggest that the cytopathic effect elicited by these vectors is mediated through autophagy, a form of programmed cell death. Likewise, temozolomide (TMZ), a chemotherapeutic agent used for the treatment of malignant gliomas, also triggers autophagic cell death. In this study, we examined the potential to combine the two treatments in the setting of experimental glioma. In vitro, pretreatment with TMZ followed by CRAd-Surivin-pk7 enhanced cytotoxicity against a panel of glioma cell lines. Western blot analysis showed increased expression of BAX and p53, decreased expression of BCL2 and elevated level of APG5. Treatment with TMZ followed by CRAd-Survivin-pk7 (CRAd-S-pk7) led to a significant over-expression of autophagy markers, acidic vesicular organelles and light-chain 3 (LC3). These results were further evaluated in vivo, in which 90% of the mice with intracranial tumours were long-term survivors (>100 days) after treatment with TMZ and CRAd-S-pk7 (P<0.01). Analysis of tumours ex vivo showed expression of both LC3 and cleaved Caspase-3, proving that both autophagy and apoptosis are responsible for cell death in vivo. These results suggest that combination of chemovirotherapy offers a powerful tool against malignant glioma and should be further explored in the clinical setting.
Collapse
|
34
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
35
|
Sonabend AM, Ulasov IV, Han Y, Rolle CE, Nandi S, Cao D, Tyler MA, Lesniak MS. Biodistribution of an oncolytic adenovirus after intracranial injection in permissive animals: a comparative study of Syrian hamsters and cotton rats. Cancer Gene Ther 2008; 16:362-72. [PMID: 19011597 DOI: 10.1038/cgt.2008.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conditionally replicative adenoviruses (CRAds) are often evaluated in mice; however, normal and cancerous mouse tissues are poorly permissive for human CRAds. As the cotton rat (CR) is a semipermissive animal and the Syrian hamster (SH) is a fully permissive model for adenoviral replication, we compared them in a single study following intracranial (i.c.) injection of a novel glioma-targeting CRAd. Viral genomic copies were quantified by real-time PCR in brain, blood, liver and lung. The studies were corroborated by immunohistochemical, serological and immunological assays. CR had a multiple log higher susceptibility for adenoviral infection than SH. A similar amount of genomic copies of CRAd-Survivin-pk7 and human adenovirus serotype 5 (AdWT) was found in the brain of CR and in all organs from SH. In blood and lung of CR, AdWT had more genomic copies than CRAd-Survivin-pk7 in some of the time points studied. Viral antigens were confirmed in brain slices, an elevation of serum transaminases was observed in both models, and an increase in anti-adenoviral antibodies was detected in SH sera. In conclusion, CR represents a sensitive model for studying biodistribution of CRAds after i.c. delivery, allowing for the detection of differences in the replication of CRAd-Survivin-pk7 and AdWT that were not evident in SH.
Collapse
Affiliation(s)
- A M Sonabend
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Vector therapies for malignant glioma: shifting the clinical paradigm. Expert Opin Drug Deliv 2008; 5:445-58. [PMID: 18426385 DOI: 10.1517/17425247.5.4.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Malignant glioma represents one of the most aggressive and devastating forms of human cancer. At present, there exists no successful treatment for this disease. Gene therapy, or vector therapy, has emerged as a viable experimental treatment method for intracranial malignancies. OBJECTIVE Vector therapy paradigms that have entered the clinical arena have shown adequate safety; however, the majority of the studies failed to observe significant clinical benefits. As such, researchers have refocused their efforts on developing novel vectors as well as new delivery methods to enhance the therapeutic effect of a particular vector. In this review, we discuss common vector therapy approaches used in clinical trials, their drawbacks and potential ways of overcoming these challenges. METHODS We focus on the experimental evaluation of cell-based vector therapies and adenoviral and herpes simplex virus type 1 vectors in the treatment of malignant glioma. CONCLUSION Vector therapy remains a promising treatment strategy for malignant glioma. Although significant questions remain to be answered, early clinical data suggest safety of this approach and future studies will likely address the efficacy of the proposed therapy.
Collapse
Affiliation(s)
- Matthew A Tyler
- University of Chicago, The Brain Tumor Center, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
37
|
Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008; 26:831-41. [PMID: 18192232 DOI: 10.1634/stemcells.2007-0758] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene therapy represents a promising treatment alternative for patients with malignant gliomas. Nevertheless, in the setting of these highly infiltrative tumors, transgene delivery remains a challenge. Indeed, viral vehicles tested in clinical trials often target only those tumor cells that are adjacent to the injection site. In this study, we examined the feasibility of using human mesenchymal stem cells (hMSC) to deliver a replication-competent oncolytic adenovirus (CRAd) in a model of intracranial malignant glioma. To do so, CRAds with a chimeric 5/3 fiber or RGD backbone with or without CXCR4 promoter driving E1A were examined with respect to replication and toxicity in hMSC, human astrocytes, and the human glioma cell line U87MG by quantitative polymerase chain reaction and membrane integrity assay. CRAd delivery by virus-loaded hMSC was then evaluated in vitro and in an in vivo model of mice bearing intracranial U87MG xenografts. Our results show that hMSC are effectively infected by CRAds that use the CXCR4 promoter. CRAd-CXCR4-RGD had the highest replication, followed by CRAd-CXCR4-5/3, in hMSC, with comparable levels of toxicity. In U87MG tumor cells, CRAd-CXCR4-5/3 showed the highest replication and toxicity. Virus-loaded hMSC effectively migrated in vitro and released CRAds that infected U87MG glioma cells. When injected away from the tumor site in vivo, hMSC migrated to the tumor and delivered 46-fold more viral copies than injection of CRAd-CXCR4-5/3 alone. Taken together, these results indicate that hMSC migrate and deliver CRAd to distant glioma cells. This delivery strategy should be explored further, as it could improve the outcome of oncolytic virotherapy for glioma.
Collapse
Affiliation(s)
- Adam M Sonabend
- Brain Tumor Center, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|