1
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
2
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
3
|
Quenum AJI, Shukla A, Rexhepi F, Cloutier M, Ghosh A, Kufer TA, Ramanathan S, Ilangumaran S. NLRC5 Deficiency Deregulates Hepatic Inflammatory Response but Does Not Aggravate Carbon Tetrachloride-Induced Liver Fibrosis. Front Immunol 2021; 12:749646. [PMID: 34712238 PMCID: PMC8546206 DOI: 10.3389/fimmu.2021.749646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleotide-binding leucine-rich repeat-containing receptor (NLR) family protein-5 (NLRC5) controls NF-κB activation and production of inflammatory cytokines in certain cell types. NLRC5 is considered a potential regulator of hepatic fibrogenic response due to its ability to inhibit hepatic stellate activation in vitro. To test whether NLRC5 is critical to control liver fibrosis, we treated wildtype and NLRC5-deficient mice with carbon tetrachloride (CCl4) and assessed pathological changes in the liver. Serum alanine transaminase levels and histopathology examination of liver sections revealed that NLRC5 deficiency did not exacerbate CCl4-induced liver damage or inflammatory cell infiltration. Sirius red staining of collagen fibers and hydroxyproline content showed comparable levels of liver fibrosis in CCl4-treated NLRC5-deficient and control mice. Myofibroblast differentiation and induction of collagen genes were similarly increased in both groups. Strikingly, the fibrotic livers of NLRC5-deficient mice showed reduced expression of matrix metalloproteinase-3 (Mmp3) and tissue inhibitor of MMPs-1 (Timp1) but not Mmp2 or Timp2. Fibrotic livers of NLRC5-deficient mice had increased expression of TNF but similar induction of TGFβ compared to wildtype mice. CCl4-treated control and NLRC5-deficient mice displayed similar upregulation of Cx3cr1, a monocyte chemoattractant receptor gene, and the Cd68 macrophage marker. However, the fibrotic livers of NLRC5-deficient mice showed increased expression of F4/80 (Adgre1), a marker of tissue-resident macrophages. NLRC5-deficient livers showed increased phosphorylation of the NF-κB subunit p65 that remained elevated following fibrosis induction. Taken together, NLRC5 deficiency deregulates hepatic inflammatory response following chemical injury but does not significantly aggravate the fibrogenic response, showing that NLRC5 is not a critical regulator of liver fibrosis pathogenesis.
Collapse
Affiliation(s)
- Akouavi Julite I. Quenum
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Amit Ghosh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Thomas A. Kufer
- Department of Immunology (180b), Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, Canada
| |
Collapse
|
4
|
Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie 2021; 182:73-84. [PMID: 33444661 DOI: 10.1016/j.biochi.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common and 2nd deadliest cancer worldwide. HCC risk factors include alcohol induced liver cirrhosis, which prompts hepatic inflammation, cell necrosis, and fibrosis deposition. As 25% of HCC cases are associated with alcohol induced liver disease, understanding the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic responses are critical. This study utilized the Oncopig Cancer Model-a transgenic pig model that recapitulates human HCC through induced expression of KRASG12D and TP53R167H driver mutations-to investigate the molecular mechanisms underlying alcohol induced liver disease. Oncopigs (n = 5) underwent fibrosis induction via infusion of ethanol and ethiodized oil (1:3 v/v dosed at 0.75 mL/kg) into the hepatic arterial circulation. Eight-weeks post induction, liver tissue samples from fibrotic and age-matched control (n = 5) Oncopigs were collected for histological evaluation and transcriptional profiling. Increased hepatic inflammation and fibrosis was observed in fibrotic Oncopigs via pathological assessment. Transcriptional profiling (RNA-seq) resulted in the identification of 4387 differentially expressed genes between Oncopig fibrotic and control livers. GO term enrichment analysis identified pathway alterations associated with cirrhosis progression in humans, including cell proliferation, angiogenesis, extracellular matrix deposition, and oxidation-reduction. Key alterations include activation of hepatic stellate cells, increased matrix metalloproteinase production, and altered expression of ABC and SLC transporter genes involved in transport of anticancer drugs.These results demonstrate Oncopig liver fibrosis recapitulates transcriptional hallmarks of human cirrhosis, making the Oncopig an ideal model for studying the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic response.
Collapse
Affiliation(s)
- Alvi Yasmin
- Department of Radiology, University of Illinois at Chicago, United States
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, United States.
| |
Collapse
|
5
|
Zwaans BMM, Nicolai HE, Chancellor MB, Lamb LE. Prostate cancer survivors with symptoms of radiation cystitis have elevated fibrotic and vascular proteins in urine. PLoS One 2020; 15:e0241388. [PMID: 33119677 PMCID: PMC7595289 DOI: 10.1371/journal.pone.0241388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Radiation for pelvic cancers can result in severe bladder damage and radiation cystitis (RC), which is characterized by chronic inflammation, fibrosis, and vascular damage. RC development is poorly understood because bladder biopsies are difficult to obtain. The goal of this study is to gain understanding of molecular changes that drive radiation-induced cystitis in cancer survivors using urine samples from prostate cancer survivors with history of radiation therapy. 94 urine samples were collected from prostate cancer survivors with (n = 85) and without (n = 9) history of radiation therapy. 15 patients with radiation history were officially diagnosed with radiation cystitis. Levels of 47 different proteins were measured using Multiplex Luminex. Comparisons were made between non-irradiated and irradiated samples, and within irradiated samples based on radiation cystitis diagnosis, symptom scores or hematuria. Statistical analysis was performed using Welch’s t-test. In prostate cancer survivors with history of radiation therapy, elevated levels of PAI 1, TIMP1, TIMP2, HGF and VEGF-A were detected in patients that received a radiation cystitis diagnosis. These proteins were also increased in patients suffering from hematuria or high symptom scores. No inflammatory proteins were detected in the urine, except in patients with gross hematuria and end stage radiation cystitis. Active fibrosis and vascular distress is detectable in the urine through elevated levels of associated proteins. Inflammation is only detected in urine of patients with end-stage radiation cystitis disease. These results suggest that fibrosis and vascular damage drive the development of radiation cystitis and could lead to the development of more targeted treatments.
Collapse
Affiliation(s)
- Bernadette M. M. Zwaans
- Department of Urology, William Beaumont Hospital, Royal Oak, Michigan, United States of America
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
| | - Heinz E. Nicolai
- Departamento de Urología, Universidad de Chile, Santiago, Chile
- Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Michael B. Chancellor
- Department of Urology, William Beaumont Hospital, Royal Oak, Michigan, United States of America
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
| | - Laura E. Lamb
- Department of Urology, William Beaumont Hospital, Royal Oak, Michigan, United States of America
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214:17-29. [PMID: 31476281 PMCID: PMC6848786 DOI: 10.1016/j.trsl.2019.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a wound-healing process induced by chronic liver injuries, such as nonalcoholic steatohepatitis, hepatitis, alcohol abuse, and metal poisoning. The accumulation of excessive extracellular matrix (ECM) in the liver is a key characteristic of liver fibrosis. Activated hepatic stellate cells (HSCs) are the major producers of ECM and therefore play irreplaceably important roles during the progression of liver fibrosis. Liver fibrogenesis is highly correlated with the activation of HSCs, which is regulated by numerous profibrotic cytokines. Using RNA interference to downregulate these cytokines in activated HSCs is a promising strategy to reverse liver fibrosis. Meanwhile, microRNAs (miRNAs) have also been exploited for the treatment of liver fibrosis. This review focuses on the current siRNA- and miRNA-based liver fibrosis treatment strategies by targeting activated HSCs in the liver.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri.
| |
Collapse
|
7
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|
8
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
9
|
Mottaghitalab F, Rastegari A, Farokhi M, Dinarvand R, Hosseinkhani H, Ou KL, Pack DW, Mao C, Dinarvand M, Fatahi Y, Atyabi F. Prospects of siRNA applications in regenerative medicine. Int J Pharm 2017; 524:312-329. [PMID: 28385649 DOI: 10.1016/j.ijpharm.2017.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) has established its reputation in the field of tissue engineering owing to its ability to silence the proteins that inhibit tissue regeneration. siRNA is capable of regulating cellular behavior during tissue regeneration processes. The concept of using siRNA technology in regenerative medicine derived from its ability to inhibit the expression of target genes involved in defective tissues and the possibility to induce the expression of tissue-inductive factors that improve the tissue regeneration process. To date, siRNA has been used as a suppressive biomolecule in different tissues, such as nervous tissue, bone, cartilage, heart, kidney, and liver. Moreover, various delivery systems have been applied in order to deliver siRNA to the target tissues. This review will provide an in-depth discussion on the development of siRNA and their delivery systems and mechanisms of action in different tissues.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Daniel W Pack
- Department of Chemical & Materials Engineering and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meshkat Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep 2016; 36:BSR20160107. [PMID: 27247426 PMCID: PMC4945993 DOI: 10.1042/bsr20160107] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.
Collapse
|
11
|
Hoffmann DB, Böker KO, Schneider S, Eckermann-Felkl E, Schuder A, Komrakova M, Sehmisch S, Gruber J. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e298. [PMID: 27003757 PMCID: PMC5014456 DOI: 10.1038/mtna.2016.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/04/2016] [Indexed: 01/29/2023]
Abstract
Bone remodeling requires a precise balance between formation and resorption. This complex process involves numerous factors that orchestrate a multitude of biochemical events. Among these factors are hormones, growth factors, vitamins, cytokines, and, most notably, osteoprotegerin (OPG) and the receptor activator for nuclear factor-kappaB ligand (RANKL). Inflammatory cytokines play a major role in shifting the RANKL/OPG balance toward excessive RANKL, resulting in osteoclastogenesis, which in turn initiates bone resorption, which is frequently associated with osteoporosis. Rebalancing RANKL/OPG levels may be achieved through either upregulation of OPG or through transient silencing of RANKL by means of RNA interference. Here, we describe the utilization of a viral capsid-based delivery system for in vivo and in vitro RNAi using synthetic small interfering RNA (siRNA) molecules in rat osteoblasts. Polyoma JC virus-derived virus-like particles are capable of delivering siRNAs to target RANKL in osteoblast cells both in vitro and in a rat in vivo system. Expression levels were monitored using quantitative real-time polymerase reaction and enzyme-linked immunosorbent assay after single and repeated injections over a 14-day period. Our data indicate that this is an efficient and safe route for in vivo delivery of gene modulatory tools to study important molecular factors in a rat osteoporosis model.
Collapse
Affiliation(s)
- Daniel B Hoffmann
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kai O Böker
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Stefan Schneider
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Ellen Eckermann-Felkl
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Angelina Schuder
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Gruber
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| |
Collapse
|
12
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
13
|
Li Y, Liu F, Ding F, Chen P, Tang M. Inhibition of liver fibrosis using vitamin A-coupled liposomes to deliver matrix metalloproteinase-2 siRNA in vitro. Mol Med Rep 2015; 12:3453-3461. [PMID: 26017616 PMCID: PMC4526069 DOI: 10.3892/mmr.2015.3842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis is a common form of wound healing in response to chronic liver injuries and can lead to more serious complications, including mortality. It is well-established that hepatic stellate cells (HSCs) are central mediators of hepatic fibrosis, and matrix metalloproteinase-2 (MMP-2) is important in the formation of liver fibrosis. In addition, HSCs are the primary cells secreting MMP-2 and extracellular matrix, therefore, there has been increasing interest in developing agents with high selectivity towards HSCs. However, no clinical drugs based on MMP-2, directed against HSCs, have been used to prevent fibrosis. Following consideration of the abundant vitamin A (VitA) receptors expressed on the cellular membrane of HSCs, the present study constructed VitA-coupled liposomes (VitA-lips) using dicyclohexylcarbodiimide-1, 3-diaminopentane condensation, rotatory film processing and ultrasonic oscillation. The results revealed that the liposomes exhibited low cytotoxicity and a suitable binding ability to MMP-2 small interference (si)RNA. Furthermore, the liposomes effectively delivered MMP-2 siRNA to the HSC-T6 cells. When HSCs were treated with the liposomes carrying MMP-2 siRNA (VitA-lip-MMP-2 siRNA), the mRNA expression and activity of MMP-2, and the protein expression levels of α-smooth muscle actin and type I collagen were significantly reduced. These results suggested that inhibition of the expression of MMP-2 in HSC-T6 cells may contribute to preventing hepatic fibrosis, and provided experimental support to the development of specific drugs against MMP-2 to prevent fibrogenesis in chronic liver disease.
Collapse
Affiliation(s)
- Yiping Li
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengan Ding
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Meng Tang
- Department of Toxicology, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
14
|
Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 2015; 44-46:147-56. [PMID: 25599939 PMCID: PMC4495728 DOI: 10.1016/j.matbio.2015.01.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/18/2023]
Abstract
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - John Baber
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Takehiro Fujii
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
16
|
Kim KH, Park KK. Small RNA- and DNA-based gene therapy for the treatment of liver cirrhosis, where we are? World J Gastroenterol 2014; 20:14696-14705. [PMID: 25356032 PMCID: PMC4209535 DOI: 10.3748/wjg.v20.i40.14696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/03/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases with different aetiologies rely on the chronic activation of liver injuries which result in a fibrogenesis progression to the end stage of cirrhosis and liver failure. Based on the underlying cellular and molecular mechanisms of a liver fibrosis, there has been proposed several kinds of approaches for the treatment of liver fibrosis. Recently, liver gene therapy has been developed as an alternative way to liver transplantation, which is the only effective therapy for chronic liver diseases. The activation of hepatic stellate cells, a subsequent release of inflammatory cytokines and an accumulation of extracellular matrix during the liver fibrogenesis are the major obstacles to the treatment of liver fibrosis. Several targeted strategies have been developed, such as antisense oligodeoxynucleotides, RNA interference and decoy oligodeoxynucleotides to overcome this barriers. With this report an overview will be provided of targeted strategies for the treatment of liver cirrhosis, and particularly, of the targeted gene therapy using short RNA and DNA segments.
Collapse
|
17
|
Guo C, Xu L, He Q, Liang T, Duan X, Li R. Anti-fibrotic effects of puerarin on CCl4-induced hepatic fibrosis in rats possibly through the regulation of PPAR-γ expression and inhibition of PI3K/Akt pathway. Food Chem Toxicol 2013; 56:436-42. [DOI: 10.1016/j.fct.2013.02.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/10/2023]
|
18
|
Jia X, Dang S, Cheng Y, Zhang X, Li M, Li Y, Li S. Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. J TRADIT CHIN MED 2013; 32:415-22. [PMID: 23297566 DOI: 10.1016/s0254-6272(13)60048-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rat with hepatocellular carcinoma (HCC). METHODS Male SD rats were divided into control (n=10), model (n=20) and SSd (n=20) groups, and model and SSd groups given intragastric 0.2% (w/v) N-diethylnitrosamine to induce HCC. SSd group received 0.03% (w/v) SSd in saline. Liver samples were analysed immunohistochemically for syndecan-2, MMP-2, MMP-13 and TIMP-2 at 16 weeks. RESULTS The model group had more malignant nodules than the SSd group; all model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01). The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates. CONCLUSION SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue.
Collapse
Affiliation(s)
- Xiaoli Jia
- Department of Infectious Diseases, the Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Niimi N, Kohyama K, Matsumoto Y. Therapeutic gene silencing with siRNA for IL-23 but not for IL-17 suppresses the development of experimental autoimmune encephalomyelitis in rats. J Neuroimmunol 2012; 254:39-45. [PMID: 22989513 DOI: 10.1016/j.jneuroim.2012.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/02/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Gene silencing with siRNAs is important as a therapeutic tool in autoimmune diseases. In this study, we administered siRNAs specific for cytokines that may be involved in pathogenesis of experimental autoimmune encephalomyelitis (EAE). siRNA specific for IL-23p19 (siRNA-IL-23) suppressed EAE almost completely, whereas siRNA-IL-17A did not modulate the clinical course. Flow cytometric analysis revealed that siRNA-IL-23 significantly reduced the proportion of both IFN-γ(+)IL-17(-) Th1 and IFN-γ(-)IL-17(+) Th17 cells in the spinal cord. Consistent with this finding, siRNA-IL-23 treatment downregulated IL-12, IL-17 and IL-23 mRNAs. These findings indicate that IL-23, but not IL-17, play an important role in the development of EAE.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Drug Delivery Systems
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Flow Cytometry
- Freund's Adjuvant/adverse effects
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Myelin Basic Protein/immunology
- Myelin Basic Protein/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Rats
- Rats, Inbred Lew
- Severity of Illness Index
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Statistics, Nonparametric
- Th1 Cells/drug effects
- Th1 Cells/metabolism
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Time Factors
Collapse
Affiliation(s)
- Naoko Niimi
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Di Minno MND, Guida A, Camera M, Colli S, Di Minno G, Tremoli E. Overcoming limitations of current antiplatelet drugs: a concerted effort for more profitable strategies of intervention. Ann Med 2011; 43:531-44. [PMID: 21815879 PMCID: PMC3231843 DOI: 10.3109/07853890.2011.582137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Platelets play a central role in the pathophysiology of atherothrombosis, an inappropriate platelet activation leading to acute ischemic complications (acute myocardial infarction, ischemic stroke). In view of this, platelets are a major target for pharmacotherapy. Presently, the main classes of antiplatelet agents approved for the use in such complications are aspirin and thienopyridines. Although antiplatelet treatment with these two types of drugs, alone or in combination, leads to a significant reduction of non-fatal myocardial infarction (-32%), non-fatal stroke (-25%), and of cardiovascular death (-17%), a residual risk persists. Newer antiplatelet agents have addressed some, but not all, these limitations. Vis-à-vis their net clinical benefit, the higher potency of some of them is associated with a rise in bleeding complications. Moreover, newer thienopyridines do not show advantages over and above the older ones as to reduction of stroke. A concerted effort that takes into consideration clinical, genetic, and laboratory information is increasingly recognized as a major direction to be pursued in the area. The well-established road signs of clinical epidemiology will provide major information to define newer potentially useful targets for platelet pharmacology.
Collapse
Affiliation(s)
- Matteo Nicola Dario Di Minno
- Department of Clinical and Experimental Medicine, Regional Reference Centre for Coagulation Disorders, 'Federico II' University, Naples, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Ge WS, Wu JX, Fan JG, Wang YJ, Chen YW. Inhibition of high-mobility group box 1 expression by siRNA in rat hepatic stellate cells. World J Gastroenterol 2011; 17:4090-8. [PMID: 22039322 PMCID: PMC3203359 DOI: 10.3748/wjg.v17.i36.4090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of high-mobility group box 1 (HMGB1) protein during liver fibrogenesis and investigate the functional effects of HMGB1 gene silencing in hepatic stellate cells (HSCs) using siRNA. METHODS Hepatic fibrosis in rats was induced throu-gh serial subcutaneous injections of dimethylnitrosamine, and expression of HMGB1 was detected by immunohistochemistry. HMGB1 siRNAs were developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000. HMGB1 expression was evaluated by real-time polymerase chain reaction (PCR) and Western blotting analysis. Expression of α-smooth muscle actin (α-SMA) and collagen types I and III was evaluated by real-time PCR. Cell proliferation and the cell cycle were determined using the methyl thiazolyl tetrazolium method. Finally, collagen content in HSC supernatant was evaluated by an enzyme-linked immunosorbent assay. RESULTS The results showed that HMGB1 was upregulated during liver fibrosis and that its expression was closely correlated with the deposition of collagen. siRNA molecules were successfully transfected into HSCs and induced inhibition of HMGB1 expression in a time-dependent manner. Moreover, HMGB1 siRNA treatment inhibited synthesis of α-SMA and collagen types I and III in transfected HSCs. CONCLUSION This study suggests a significant fun-ctional role for HMGB1 in the development of liver fibrosis. It also demonstrates that downregulation of HMGB1 expression might be a potential strategy to treat liver fibrosis.
Collapse
Affiliation(s)
- Wen-Song Ge
- Department of Gastroenterology, Shanghai Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
22
|
Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 2011; 1:1095-1111. [PMID: 20161478 DOI: 10.4155/fmc.09.83] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of proteases that belong to the metazincin family. These proteins consist of similar structures featuring a signaling peptide, a propeptide domain, a catalytic domain where the notable zinc ion binding site is found and a hinge region that binds to the C-terminal hemoplexin domain. MMPs can be produced by numerous cell types through secretion or localization to the cell membrane. While certain chemical compounds have been known to generally inhibit MMPs, naturally occurring proteins known as tissue inhibitors of metalloproteinases (TIMPs) effectively interact with MMPs to modify their biological roles. MMPs are very important enzymes that actively participate in remodeling the extracellular matrix by degrading certain constituents, along with promoting cell proliferation, migration, differentiation, apoptosis and angiogenesis. In normal adult tissue, they are almost undetectable; however, when perturbed through injury, disease or pregnancy, they have elevated expression. The goal of this review is to identify new experimental findings that have provided further insight into the role of MMPs in skeletal muscle, nerve and dermal tissue, as well as in the liver, heart and kidneys. Increased expression of MMPs can improve the regeneration potential of wounds; however, an imbalance between MMP and TIMP expression can prove to be destructive for afflicted tissues.
Collapse
|
23
|
Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S, Onuma A, Iinuma K, Tsuchiya S. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 2010; 297:19-28. [DOI: 10.1016/j.jns.2010.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
|
24
|
Inhibitory effect of antisense oligonucleotide targeting TIMP-2 on immune-induced liver fibrosis. Dig Dis Sci 2010; 55:1286-95. [PMID: 19517234 DOI: 10.1007/s10620-009-0858-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 05/19/2009] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We previously reported that both experimental and human studies have shown the importance of TIMP-1 and TIMP-2 in the development of liver fibrosis, a disease mostly caused by HBV and HCV infection in China. Inhibiting the expression of TIMP-1 by an antisense oligonucleotide (ASON) can prevent liver fibrosis through decreasing the deposition of collagen I and III. Whether blocking the expression of TIMP-2 has the same effect on liver fibrosis is not clear. MATERIALS AND METHODS To interfere with this potentially effective target, we designed and synthesized two different ASON targeting TIMP-2, then mixed and transfected them by hydrodynamic injection into the rat livers with immune-induced liver fibrosis. We isolated HSCs from the HSA-induced rat model with liver fibrosis, and transfected them with ASON or sense oligonucleotide in vitro. RESULTS We observed that TIMP-2 ASON markedly reduced the expression of TIMP-2 by real-time PCR, Western blot, and enzyme linked immunosorbent assay. However, TIMP-2 ASON had little effect on alpha-SMA expression in vitro by Western blot. Inhibition of the expression of TIMP-2 by TIMP-2 ASON clearly decreased deposition of collagen I and IV, ameliorated liver pathology, and improved the liver function among the rats with immune-induced liver fibrosis. CONCLUSION The results suggested that TIMP-2 ASON could prevent the progression of liver fibrosis in this rat model. It is possible that this could form the basis for exploration of new liver anti-fibrosis drugs at a genetic level.
Collapse
|
25
|
Guo CJ, Pan Q, Jiang B, Chen GY, Li DG. Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells. Apoptosis 2010; 14:1331-40. [PMID: 19784778 DOI: 10.1007/s10495-009-0401-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In our previous studies, we identified miR-16 as being downregulated during activation of hepatic stellate cells (HSCs) by microarray hybridization. However, the roles and related mechanisms of miR-16 in HSCs are not understood. In this study, The miRNA RNAi technique was used to analyze the effects of miR-16 on biological properties of HSCs in vitro. The lentiviral vector encoding miR-16 was constructed and transfected. Furthermore, the expression level of miR-16 was measured by real-time PCR. Cellular growth and proliferation capacity were assayed using the cell counting kit-8 (CCK-8). The apoptosis rate and cell-cycle distribution were measured by flow cytometry. Cell morphological characteristics were identified by phase-contrast microscopy, fluorescence microscopy and electron microscopy. The underlying mechanisms related to the changes in biological properties were assessed. The identity of the recombinant plasmid was confirmed by restriction endonuclease analysis and DNA sequencing. Virus titer was 10(8) > ifu/m. Restoring the intracellular miRNAs by miR-16 administration greatly reduced the expression levels of cyclin D1 (CD1). Cell-cycle arrest and typical features of apoptosis were detected in activated HSCs treated with pLV-miR-16. Our results indicate that transduction of miR-16 offers a feasible approach to significantly inhibit HSC proliferation and increase the apoptosis index. Thus, targeted transfer of miR-16 into HSC may be useful for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Can-Jie Guo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University, China
| | | | | | | | | |
Collapse
|
26
|
Abstract
Hepatic fibrosis is a common consequence in patients with chronic liver damage. To date, no agent has been approved for the treatment of hepatic fibrosis. RNA interference (RNAi) is known to be a powerful tool for post-transcriptional gene silencing and has opened new avenues in gene therapy. The problems of lack of cell specificity in vivo and subsequently the occurrence of side effects has hampered the development of hepatic fibrosis treatment. To overcome these shortcomings, several targeted strategies have been developed, such as hydrodynamics-based approaches, local administration, cell-type-selective ligands and cell-type-specific promoters or enhancers, etc. Here, we provide an overview of targeted strategies for the treatment of hepatic fibrosis, and particularly, targeted RNAi for hepatic fibrosis.
Collapse
Affiliation(s)
- Ping-Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
| | | |
Collapse
|
27
|
Guo CJ, Pan Q, Jiang B, Chen GY, Li DG. Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells. Apoptosis 2009. [DOI: :+10.1007/s10495-009-0401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Luo L, Zhou A. Antifibrotic activity of anisodamine in vivo is associated with changed intrahepatic levels of matrix metalloproteinase-2 and its inhibitor tissue inhibitors of metalloproteinases-2 and transforming growth factor beta1 in rats with carbon tetrachloride-induced liver injury. J Gastroenterol Hepatol 2009; 24:1070-6. [PMID: 19220677 DOI: 10.1111/j.1440-1746.2008.05756.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM To investigate the protective effects and the mechanism of anisodamine on deposition of extracellular matrix in experimental liver fibrosis. METHODS Experimental liver fibrosis was produced by carbon tetrachloride (CCL(4)). The preventive group was treated for 10 weeks with anisodamine 7.0 mg/kg per day i.p. injection. Two therapeutic groups were treated for 6 weeks by anisodamine 7.0 or 14.0 mg/kg per day i.p. injection. Studies were made at CCL(4) administration on the 10th weekend. Serum biochemical indices and the contents of malondialdehyde (MDA) and hydroxyproline (HYP) in livers were compared. The expression of transforming growth factor-beta1 (TGF-beta1) was observed by immunohistochemistry. The reverse transcription polymerase chain reaction was used to detect the expressions of matrix metalloproteinase-2 (MMP2) and tissue inhibitor of metalloproteinase-2 (TIMP2) mRNA in livers and the ratio of MMP2 and TIMP2 was measured. The proteins of MMP2 in liver were determined by gelatin zymography. RESULTS The serum levels of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyltransferase and hyaluronic acid of liver fibrosis rats improved significantly by treatment with anisodamine. The contents of MDA and HYP in liver decreased and the expressions of TGF-beta1 were inhibited by treatment with anisodamine. The levels of MMP2 and TIMP2 mRNA and the protein of MMP2 in livers were significantly reduced in the anisodamine preventive group and therapeutic groups. The expression ratios of MMP2 and TIMP2 mRNA were adjusted in treated groups. CONCLUSION Anisodamine can inhibit hepatic fibrosis.
Collapse
Affiliation(s)
- Lin Luo
- Medical College of Nantong University, Nantong, Jiangsu, China
| | | |
Collapse
|
29
|
Pan Q, Tilanus HW, Janssen HLA, van der Laan LJW. Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opin Biol Ther 2009; 9:713-24. [DOI: 10.1517/14712590902989970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Guo CJ, Pan Q, Li DG, Sun H, Liu BW. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol 2009; 50:766-78. [PMID: 19232449 DOI: 10.1016/j.jhep.2008.11.025] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/28/2008] [Accepted: 11/06/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS To reveal the microRNA (miRNA) expression profile and related roles in rat HSCs during activation. METHODS miRNA expression profiling was analyzed in quiescent and in culture-activated HSCs by microarray. The differentially expressed miRNAs, as verified by RT-PCR, were subjected to gene ontology (GO) analysis. Furthermore, the effects of miR-16 and miR-15b on the apoptosis of activated HSCs were investigated by Hoechst 33258, TUNEL staining and annexin-V/PI labeling flow cytometry. The underlying mechanism related to Bcl-2 and caspases was assessed. RESULTS The upregulated and downregulated miRNAs in activated HSCs were 12 miRNAs and 9 miRNAs, respectively. The differential expression of miR-16, -15b, -122, -138, -143, and -140 was validated. High-enrichment GOs containing apoptosis-related targeted genes and miRNA-gene networks characterized by Bcl-2, which was targeted by the miR-15/16 family, uncovered the critical role of miR-16 and miR-15b in apoptosis. Restoring the intracellular miRNAs by miR-16 and miR-15b administration greatly reduced Bcl-2, and increased the expression of caspases 3, 8, and 9. Significantly elevated rates of apoptosis were then induced in activated HSCs. CONCLUSIONS The activation of HSCs relate to 21 miRNAs. Among these, mir-15b and miR-16 may be essential for apoptosis by targeting Bcl-2 and the caspase signaling pathway.
Collapse
Affiliation(s)
- Can-Jie Guo
- Digestive Disease Laboratory and Department of Gastroenterology, School of Medicine, Shanghai Jiaotong University, Xinhua Hospital, No. 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
31
|
Hu PF, Zhu YW, Zhong W, Chen YX, Lin Y, Zhang X, Yin C, Yue HY, Xie WF. Inhibition of plasminogen activator inhibitor-1 expression by siRNA in rat hepatic stellate cells. J Gastroenterol Hepatol 2008; 23:1917-25. [PMID: 18761555 DOI: 10.1111/j.1440-1746.2008.05485.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIM The plasminogen activator/plasmin system is known to regulate the extracellular matrix turnover. The aim of this study was to detect the role of plasminogen activator inhibitor-1 (PAI-1) during liver fibrogenesis and investigate the functional effects of PAI-1 gene silencing in rat hepatic stellate cells (HSCs) using small interfering RNA (siRNA). METHODS Hepatic fibrosis in rats was induced through serial subcutaneously injections of CCl(4) and the expression of PAI-1 was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (PCR). PAI-1 siRNA molecules were constructed and transiently transfected into HSC-T6 using the cell suspension transfection method. The pSUPER RNA interfering system was used to establish the HSC stable cell line pSUPER-shPAI. Expression of alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1, and collagen types I and III were evaluated by real-time PCR. Cell proliferation and the cell cycle were determined by the methyl thiazolyl tetrazolium (MTT) method and flow cytometry. Collagen content in HSCs supernatant was evaluated by enzyme-linked immunosorbent assay. RESULTS The results showed that PAI-1 was upregulated during liver fibrosis, and its expression was closely correlated with the deposition of collagens. SiRNA molecules were successfully transfected into HSCs and induced inhibition of PAI-1 expression time dependently. Moreover, PAI-1 siRNA treatment downregulated alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1 expression, and inhibited collagen types I and III synthesis both at the mRNA and protein level in transiently and stably transfected HSCs. CONCLUSIONS This study suggests a significant functional role for PAI-1 in the development of liver fibrosis and that downregulating PAI-1 expression might present as a potential strategy to treat liver fibrosis.
Collapse
Affiliation(s)
- Ping-Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Antisense makes sense in engineered regenerative medicine. Pharm Res 2008; 26:263-75. [PMID: 19015958 DOI: 10.1007/s11095-008-9772-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022]
Abstract
The use of antisense strategies such as ribozymes, oligodeoxynucleotides (ODNs) and small interfering RNA (siRNA) in gene therapy, in conjunction with the use of stem cells and tissue engineering, has opened up possibilities in curing degenerative diseases and injuries to non-regenerating organs and tissues. With their unique ability to down-regulate or silence gene expression, antisense oligonucleotides are uniquely suited in turning down the production of pathogenic or undesirable proteins and cytokines. Here, we review the antisense strategies and their applications in regenerative medicine with a focus on their efficacies in promoting cell viability, regulating cell functionalities as well as shaping an optimal microenvironment for therapeutic purposes.
Collapse
|
33
|
Zhang B, Wang LT. Effects of kidney-tonifying liver-emoliating formula on connective tissue growth factor mRNA expression in hepatic fibrosis rats. Shijie Huaren Xiaohua Zazhi 2008; 16:2224-2228. [DOI: 10.11569/wcjd.v16.i20.2224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate effects of kidney-tonifying liver-emoliating formula (KTLEF) on expression of connective tissue growth factor (CTGF) mRNA in dimethylnitrosamine-induced hepatic fibrosis rats and thereby to elucidate its therapeutic effects and its underlying molecular mechanism.
METHODS: Forty male Wistar rats were randomly assigned to normal control group (n = 10), model group (n = 15) and KTLEF-treated group (n = 15). Except the normal control group, all the rats received intraperitoneal DMN injection once a day for 3 successive days for 4 wk. Then only the model group was given KTLEF for anther 4 wk. Rats were all executed at week 8. The serum liver fibrosis markers, such as HA, LN and Ⅳ-C, were measured using ELISA and RIA. The Hepatic inflammatory necrosis and collagen deposition were determined by HE staining and Sirius red staining, and CTGF mRNA expression was detected using RT-PCR.
RESULTS: The rat model of liver fibrosis induced by DMN was successfully constructed. Serum HA, LN and Ⅳ-C levels were significantly declined in BSRGF-treated group compared with those in the model-group (HA: 319.75 ± 63.23 pg/L vs 434.44 ± 98.81 pg/L; LN: 44.83 ± 4.09 pg/L vs 70.67±6.32 pg/L; Ⅳ-C: 52.79 ± 5.71 pg/L vs 79.39 ± 10.52 pg/L, all P < 0.01). The expression level of CTGF mRNA was lower in the KTLEF-treated group than that in the fibrosis model group (CTGF/β-actin: 0.76 ± 0.10 vs 1.08 ± 0.17, P < 0.01), and the least in the normal control group.
CONCLUSION: The expression of CTGF mRNA is increased in the hepatic fibrosis rats, and is supposed to be one possible mechanism of hepatic fibrosis. KTLEF can significantly inhibit CTGF mRNA expression and then effectively counteract hepatic fibrosis.
Collapse
|
34
|
Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro. BMC Cancer 2008; 8:182. [PMID: 18588710 PMCID: PMC2443806 DOI: 10.1186/1471-2407-8-182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 06/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Methods Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Results Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P < 0.05). Both MMP-2 siRNA and TIMP-2 overexpression inhibited MMP-2 activity and the in vitro invasiveness of ameloblastoma. Conclusion These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research.
Collapse
|
35
|
Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci 2008; 29:352-60. [PMID: 18539343 DOI: 10.1016/j.tips.2008.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 12/14/2022]
Abstract
Ischemic cardiovascular events represent the leading cause of mortality and morbidity worldwide, and platelet aggregation and thrombus formation are the main effectors of acute arterial ischemic events. Although antiplatelet therapy is the cornerstone of antithrombotic treatment of ischemic cardiovascular disorders, available antiplatelet agents have less than satisfactory efficacy; thus, the identification of novel potential target candidates for antiplatelet therapy is highly warranted. Recent evidence suggests that several molecules that amplify the aggregation response of platelets to activating stimuli, which are either released by platelets (potentiating molecules) or present in the milieu before platelets get activated (primers), play a major role in pathologic thrombus formation without being significantly involved in primary haemostasis. These molecules appear to be a particularly appealing novel potential pharmacologic target for antiplatelet therapy. Here, we review the present knowledge on some molecules acting as potentiators or primers of platelet activation and discuss their possible pharmacologic modulation for antithrombotic purposes.
Collapse
Affiliation(s)
- Paolo Gresele
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Via Enrico dal Pozzo, Perugia, Italy.
| | | | | |
Collapse
|
36
|
Specific siRNA targeting the receptor for advanced glycation end products inhibits experimental hepatic fibrosis in rats. Int J Mol Sci 2008; 9:638-661. [PMID: 19325776 PMCID: PMC2635697 DOI: 10.3390/ijms9040638] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 12/13/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) was studied in different stages of carbon tetrachloride induced hepatic fibrosis (HF), and effect of its gene silencing in the HF development was evaluated in rats. Silencing RAGE expression by specific siRNA effectively suppressed NF-κB activity, hepatic stellate cell activation, and accumulation of extracellular matrix proteins in the fibrotic liver, and also greatly improved the histopathology and the ultrastructure of liver cells. These effects may be partially mediated by the inhibition on IκBα degradation. RAGE gene silencing effectively prevented liver from fibrosis, therefore it offers a potential pharmacological tool for anti-HF gene therapy.
Collapse
|
37
|
Abstract
Hepatic fibrosis is a common pathological process of chronic liver diseases, characterized by increased synthesis and relatively low degradation of extracellular matrix (ECM) resulting from their dynamic imbalance. Recent progress in molecular biology techniques has made it possible to treat hepatic fibrosis with gene therapy. At present, the commonly used method is to induce the expression of exogenous genes by transducing enough therapeutic genes into injured liver to delay or cure liver fibrosis.
Collapse
|