1
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Casas G, Perche F, Midoux P, Pichon C, Malinge JM. DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:162-175. [PMID: 35847174 PMCID: PMC9263874 DOI: 10.1016/j.omtn.2022.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Decoy technology is a versatile and specific DNA oligonucleotide-based targeting strategy of pathogenic transcription factors (TFs). Chemical modifications of linear decoy oligonucleotides have been made to decrease nuclease sensitivity because of the presence of free ends but at the cost of new limitations that affect their use as therapeutic drugs. Although a short DNA minicircle is a phosphodiester nucleic acid without free ends, its potential therapeutic activity as a TF decoy oligonucleotide has not yet been investigated. Here we describe the in vitro and in vivo activity of formulated 95-bp minicircles bearing one or several STAT3 binding sequences in triple-negative breast cancer (TNBC). Minicircles bearing one STAT3 binding site interacted specifically with the active form of STAT3 and inhibited proliferation, induced apoptosis, slowed down cell cycle progression, and decreased STAT3 target gene expression in human and murine TNBC cells. Intratumoral injection of STAT3 minicircles inhibited tumor growth and metastasis in a murine model of TNBC. Increasing the number of STAT3 binding sites resulted in improved anticancer activity, opening the way for a TF multitargeting strategy. Our data provide the first demonstration of minicircles acting as STAT3 decoys and show that they could be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Geoffrey Casas
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Chantal Pichon, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Jean-Marc Malinge, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| |
Collapse
|
3
|
Prestigio C, Ferrante D, Marte A, Romei A, Lignani G, Onofri F, Valente P, Benfenati F, Baldelli P. REST/NRSF drives homeostatic plasticity of inhibitory synapses in a target-dependent fashion. eLife 2021; 10:e69058. [PMID: 34855580 PMCID: PMC8639147 DOI: 10.7554/elife.69058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown. Here, we show that hyperactivity-induced REST/NRSF activation, triggers a homeostatic rearrangement of GABAergic inhibition, with increased frequency of miniature inhibitory postsynaptic currents (IPSCs) and amplitude of evoked IPSCs in mouse cultured hippocampal neurons. Notably, this effect is limited to inhibitory-onto-excitatory neuron synapses, whose density increases at somatic level and decreases in dendritic regions, demonstrating a complex target- and area-selectivity. The upscaling of perisomatic inhibition was occluded by TrkB receptor inhibition and resulted from a coordinated and sequential activation of the Npas4 and Bdnf gene programs. On the opposite, the downscaling of dendritic inhibition was REST-dependent, but BDNF-independent. The findings highlight the central role of REST/NRSF in the complex transcriptional responses aimed at rescuing physiological levels of network activity in front of the ever-changing environment.
Collapse
Affiliation(s)
- Cosimo Prestigio
- Department of Experimental Medicine, University of GenovaGenovaItaly
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Daniele Ferrante
- Department of Experimental Medicine, University of GenovaGenovaItaly
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Antonella Marte
- Department of Experimental Medicine, University of GenovaGenovaItaly
| | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square HouseLondonUnited Kingdom
| | - Franco Onofri
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Pierluigi Valente
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Pietro Baldelli
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
4
|
Decoy Technology as a Promising Therapeutic Tool for Atherosclerosis. Int J Mol Sci 2021; 22:ijms22094420. [PMID: 33922585 PMCID: PMC8122884 DOI: 10.3390/ijms22094420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been classified into several types of disease, of which atherosclerosis is the most prevalent. Atherosclerosis is characterized as an inflammatory chronic disease which is caused by the formation of lesions in the arterial wall. Subsequently, lesion progression and disruption ultimately lead to heart disease and stroke. The development of atherosclerosis is the underlying cause of approximately 50% of all deaths in westernized societies. Countless studies have aimed to improve therapeutic approaches for atherosclerosis treatment; however, it remains high on the global list of challenges toward healthy and long lives. Some patients with familial hypercholesterolemia could not get intended LDL-C goals even with high doses of traditional therapies such as statins, with many of them being unable to tolerate statins because of the harsh side effects. Furthermore, even in patients achieving target LDL-C levels, the residual risk of traditional therapies is still significant thus highlighting the necessity of ongoing research for more effective therapeutic approaches with minimal side effects. Decoy-based drug candidates represent an opportunity to inhibit regulatory pathways that promote atherosclerosis. In this review, the potential roles of decoys in the treatment of atherosclerosis were described based on the in vitro and in vivo findings.
Collapse
|
5
|
Klingler C, Ashley J, Shi K, Stiefvater A, Kyba M, Sinnreich M, Aihara H, Kinter J. DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB J 2020; 34:4573-4590. [PMID: 32020675 PMCID: PMC7079142 DOI: 10.1096/fj.201902696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Aberrant expression of the transcription factor double homeobox protein 4 (DUX4) can lead to a number of diseases including facio‐scapulo‐humeral muscular dystrophy (FSHD), acute lymphoblastic leukemia, and sarcomas. Inhibition of DUX4 may represent a therapeutic strategy for these diseases. By applying Systematic Evolution of Ligands by EXponential Enrichment (SELEX), we identified aptamers against DUX4 with specific secondary structural elements conveying high affinity to DUX4 as assessed by fluorescence resonance energy transfer and fluorescence polarization techniques. Sequences analysis of these aptamers revealed the presence of two consensus DUX4 motifs in a reverse complementary fashion forming hairpins interspersed with bulge loops at distinct positions that enlarged the binding surface with the DUX4 protein, as determined by crystal structure analysis. We demonstrate that insertion of specific structural elements into transcription factor binding oligonucleotides can enhance specificity and affinity.
Collapse
Affiliation(s)
- Christian Klingler
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jon Ashley
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adeline Stiefvater
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Sinnreich
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jochen Kinter
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Miyake T, Miyake T, Kurashiki T, Morishita R. Molecular Pharmacological Approaches for Treating Abdominal Aortic Aneurysm. Ann Vasc Dis 2019; 12:137-146. [PMID: 31275464 PMCID: PMC6600097 DOI: 10.3400/avd.ra.18-00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is considered to be a potent life-threatening disorder in elderly individuals. Although many patients with a small AAA are detected during routine abdominal screening, there is no effective therapeutic option to prevent the progression or regression of AAA in the clinical setting. Recent advances in molecular biology have led to the identification of several important molecules, including microRNA and transcription factor, in the process of AAA formation. Regulation of these factors using nucleic acid drugs is expected to be a novel therapeutic option for AAA. Nucleic acid drugs can bind to target factors, mRNA, microRNA, and transcription factors in a sequence-specific fashion, resulting in a loss of function of the target molecule at the transcriptional or posttranscriptional level. Of note, inhibition of a transcription factor using a decoy strategy effectively suppresses experimental AAA formation, by regulating the expression of several genes associated with the disease progression. This review focuses on recent advances in molecular therapy of using nucleic acid drugs to treat AAA.
Collapse
Affiliation(s)
- Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuo Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Kurashiki
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Sotobayashi D, Kawahata H, Anada N, Ogihara T, Morishita R, Aoki M. Therapeutic effect of intra-articular injection of ribbon-type decoy oligonucleotides for hypoxia inducible factor-1 on joint contracture in an immobilized knee animal model. J Gene Med 2018; 18:180-92. [PMID: 27352194 DOI: 10.1002/jgm.2891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Limited range of motion (ROM) as a result of joint contracture in treatment associated with joint immobilization or motor paralysis is a critical issue. However, its molecular mechanism has not been fully clarified and a therapeutic approach is not yet established. METHODS In the present study, we investigated its molecular mechanism, focusing on the role of a transcription factor, hypoxia inducible factor-1 (HIF-1), which regulates the expression of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF), and evaluated the possibility of molecular therapy to inhibit HIF-1 activation by ribbon-type decoy oligonucleotides (ODNs) for HIF-1 using immobilized knee animal models. RESULTS In a mouse model, ROM of the immobilized knee significantly decreased in a time-dependent manner, accompanied by synovial hypertrophy. Immunohistochemical studies suggested that CTGF and VEGF are implicated in synovial hypertrophy with fibrosis. CTGF and VEGF were up-regulated at both the mRNA and protein levels at 1 and 2 weeks after immobilization, subsequent to up-regulation of HIF-1 mRNA and transcriptional activation of HIF-1. Of importance, intra-articular transfection of decoy ODNs for HIF-1 in a rat model successfully inhibited transcriptional activation of HIF-1, followed by suppression of expression of CTGF and VEGF, resulting in attenuation of restricted ROM, whereas transfection of scrambled decoy ODNs did not. CONCLUSIONS The present study demonstrates the important role of HIF-1 in the initial progression of immobilization-induced joint contracture, and indicates the possibility of molecular treatment to prevent the progression of joint contracture prior to intervention with physical therapy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daisuke Sotobayashi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Hirohisa Kawahata
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Natsuki Anada
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Toshio Ogihara
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Motokuni Aoki
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| |
Collapse
|
8
|
|
9
|
Kasparkova J, Thibault T, Kostrhunova H, Stepankova J, Vojtiskova M, Muchova T, Midoux P, Malinge JM, Brabec V. Different affinity of nuclear factor-kappa B proteins to DNA modified by antitumor cisplatin and its clinically ineffective trans isomer. FEBS J 2014; 281:1393-1408. [PMID: 24418212 DOI: 10.1111/febs.12711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/06/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
Nuclear factor-kappa B (NF-кB) comprises a family of protein transcription factors that have a regulatory function in numerous cellular processes and are implicated in the cancer cell response to antineoplastic drugs, including cisplatin. We characterized the effects of DNA adducts of cisplatin and ineffective transplatin on the affinity of NF-кB proteins to their consensus DNA sequence (кB site). Although the кB site-NF-κB protein interaction was significantly perturbed by DNA adducts of cisplatin, transplatin adducts were markedly less effective both in cell-free media and in cellulo using a decoy strategy derivatized-approach. Moreover, NF-κB inhibitor JSH-23 [4-methyl-N¹-(3-phenylpropyl)benzene-1,2-diamine] augmented cisplatin cytotoxicity in ovarian cancer cells and the data showed strong synergy with JSH-23 for cisplatin. The distinctive structural features of DNA adducts of the two platinum complexes suggest a unique role for conformational distortions induced in DNA by the adducts of cisplatin with respect to inhibition of the binding of NF-кB to the platinated кB sites. Because thousands of κB sites are present in the DNA, the mechanisms underlying the antitumor efficiency of cisplatin in some tumor cells may involve downstream processes after inhibition of the binding of NF-κB to κB site(s) by DNA adducts of cisplatin, including enhanced programmed cell death in response to drug treatment.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Block decoys: transcription-factor decoys designed for in vitro gene regulation studies. Anal Biochem 2013; 443:205-10. [PMID: 24036039 DOI: 10.1016/j.ab.2013.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 11/22/2022]
Abstract
Transcription-factor decoys are short synthetic oligodeoxynucleotides that sequester cognate transcription factors and prevent their binding at target promoters. Current methods of decoy formation have primarily been optimized for potential therapeutic applications. However, they are not ideally suited to in vitro investigations into multi-transcription factor-mediated processes that may require multiple regulatory elements to be inhibited in varying combinations. In this study we describe a novel method for chimeric decoy formation in which blocks containing discrete transcription factor binding sites are combined into circular molecules. Unlike currently available methods, block decoys allow rapid construction of chimeric decoys targeting multiple regulatory elements. Further, they enable fine-tuning of binding-site copy ratios within chimeras, allowing sophisticated control of the cellular transcriptional landscape. We show that block decoys are exonuclease-resistant and specifically inhibit expression from target binding sites. The potential of block decoys to inhibit multiple elements simultaneously was demonstrated using a chimeric decoy containing molar optimized ratios of three regulatory elements, NF-κB-RE, CRE, and E-box. The chimeric decoy inhibited expression from all three elements simultaneously at equivalent levels. The primary intended use of block decoys is in vitro gene regulation studies in which bespoke chimeras can be rapidly constructed and utilized to determine a promoter's functional regulation.
Collapse
|
11
|
Nakano S, Fukuda M, Tamura T, Sakaguchi R, Nakata E, Morii T. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors. J Am Chem Soc 2013; 135:3465-73. [PMID: 23373863 DOI: 10.1021/ja3097652] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A noncovalent RNA complex embedding an aptamer function and a fluorophore-labeled peptide affords a fluorescent ribonucleopeptide (RNP) framework for constructing fluorescent sensors. By taking an advantage of the noncovalent properties of the RNP complex, the ligand-binding and fluorescence characteristics of the fluorescent RNP can be independently tuned by taking advantage of the nature of the RNA and peptide subunits, respectively. Fluorescent sensors tailored for given measurement conditions, such as a detection wavelength and a detection concentration range for a ligand of interest can be easily identified by screening of fluorescent RNP libraries. The noncovalent configuration of a RNP becomes a disadvantage when the sensor is to be utilized at very low concentrations or when multiple sensors are applied to the same solution. Here, we report a strategy to convert a fluorescent RNP sensor in the noncovalent configuration into a covalently linked stable fluorescent RNP sensor. This covalently linked fluorescent RNP sensor enabled ligand detection at a low sensor concentration, even in cell extracts. Furthermore, application of both ATP and GTP sensors enabled simultaneous detection of ATP and GTP by monitoring each wavelength corresponding to the respective sensor. Importantly, when a fluorescein-modified ATP sensor and a pyrene-modified GTP sensor were co-incubated in the same solution, the ATP sensor responded at 535 nm only to changes in the concentration of ATP, whereas the GTP sensor detected GTP at 390 nm without any effect on the ATP sensor. Finally, simultaneous monitoring by these sensors enabled real-time measurement of adenosine deaminase enzyme reactions.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, Freilino ML, Shi H, Li C, Ly D, Rapireddy S, Etter JP, Li PK, Wang L, Chiosea S, Seethala RR, Gooding WE, Chen X, Kaminski N, Pandit K, Johnson DE, Grandis JR. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2012; 2:694-705. [PMID: 22719020 DOI: 10.1158/2159-8290.cd-12-0191] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Despite evidence implicating transcription factors, including STAT3, in oncogenesis, these proteins have been regarded as "undruggable." We developed a decoy targeting STAT3 and conducted a phase 0 trial. Expression levels of STAT3 target genes were decreased in head and neck cancers following injection with the STAT3 decoy compared with tumors receiving saline control. Decoys have not been amenable to systemic administration due to instability. To overcome this barrier, we linked the oligonucleotide strands using hexaethylene glycol spacers. This cyclic STAT3 decoy bound with high affinity to STAT3 protein, reduced cellular viability, and suppressed STAT3 target gene expression in cancer cells. Intravenous injection of the cyclic STAT3 decoy inhibited xenograft growth and downregulated STAT3 target genes in the tumors. These results provide the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development. SIGNIFICANCE This is the fi rst study of a STAT3-selective inhibitor in humans and the fi rst evidence that a transcription factor decoy can be modifi ed to enable systemic delivery. These findings have therapeutic implications beyond STAT3 to other “undruggable” targets in human cancers.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Govan JM, Lively MO, Deiters A. Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. J Am Chem Soc 2011; 133:13176-82. [PMID: 21761875 PMCID: PMC3157586 DOI: 10.1021/ja204980v] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem, NC 27157
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| |
Collapse
|
14
|
Op de Beeck M, Madder A. Unprecedented C-selective interstrand cross-linking through in situ oxidation of furan-modified oligodeoxynucleotides. J Am Chem Soc 2010; 133:796-807. [PMID: 21162525 DOI: 10.1021/ja1048169] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reagents that form interstrand cross-links have been used for a long time in cancer therapy. They covalently link two strands of DNA, thereby blocking transcription. Cross-link repair enzymes, however, can restore the transcription processes, causing resistance to certain anti-cancer drugs. The mechanism of these cross-link repair processes has not yet been fully revealed. One of the obstacles in this study is the lack of sufficient amounts of well-defined, stable, cross-linked duplexes to study the pathways of cross-link repair enzymes. Our group has developed a cross-link strategy where a furan moiety is incorporated into oligodeoxynucleotides (ODNs). These furan-modified nucleic acids can form interstrand cross-links upon selective furan oxidation with N-bromosuccinimide. We here report on the incorporation of the furan moiety at the 2'-position of a uridine through an amido or ureido linker. The resulting modified ODNs display an unprecedented selectivity for cross-linking toward a cytidine opposite the modified residue, forming one specific cross-linked duplex, which could be isolated in good yield. Furthermore, the structure of the formed cross-linked duplexes could be unambiguously characterized.
Collapse
Affiliation(s)
- Marieke Op de Beeck
- Laboratory for Organic and Biomimetic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
15
|
Soldati C, Bithell A, Conforti P, Cattaneo E, Buckley NJ. Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington's disease. J Neurochem 2010; 116:415-25. [PMID: 21105876 DOI: 10.1111/j.1471-4159.2010.07122.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Chiara Soldati
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, The James Black Centre, London, UK
| | | | | | | | | |
Collapse
|
16
|
Systemic administration of ribbon-type decoy oligodeoxynucleotide against nuclear factor κB and ets prevents abdominal aortic aneurysm in rat model. Mol Ther 2010; 19:181-7. [PMID: 20877343 DOI: 10.1038/mt.2010.208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Currently, there is no effective clinical treatment to prevent abdominal aortic aneurysm (AAA). To develop a novel therapeutic approach, we modified decoy oligodeoxynucleotide (ODN) against nuclear factor κB (NFκB) and ets, to a ribbon-shaped circular structure without chemical modification, to increase its resistance to endonuclease for systemic administration. Intraperitoneal administration of ribbon-type decoy ODNs (R-ODNs) was performed in an elastase-induced rat AAA model. Fluorescent isothiocyanate (FITC)-labeled R-ODNs could be detected in macrophages migrating into the aneurysm wall, and NFκB and ets activity were simultaneously inhibited by chimeric R-ODN. Treatment with chimeric R-ODN significantly inhibited aortic dilatation, whereas conventional phosphorothioate decoy ODN failed to prevent aneurysm formation. Significant preservation of elastic fibers was observed with chimeric R-ODN, accompanied by a reduction of secretion of several proteases from macrophages. Activation of matrix metalloproteinase (MMP)-9 and MMP-12, but not MMP-2, was suppressed in the aneurysm wall by chimeric R-ODN, whereas recruitment of macrophages was not inhibited. Treatment with chimeric R-ODN also inhibited the secretion of cathepsin B and K from macrophages. Overall, the present study demonstrated that systemic administration of chimeric R-ODNs prevented aneurysm formation in a rat model. Further modification of the decoy strategy would provide a means of less invasive molecular therapy for human AAA.
Collapse
|
17
|
Graugnard E, Cox A, Lee J, Jorcyk C, Yurke B, Hughes WL. Kinetics of DNA and RNA Hybridization in Serum and Serum-SDS. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2010; 9:603-609. [PMID: 20967137 PMCID: PMC2957020 DOI: 10.1109/tnano.2010.2053380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cancer is recognized as a serious health challenge both in the United States and throughout the world. While early detection and diagnosis of cancer leads to decreased mortality rates, current screening methods require significant time and costly equipment. Recently, increased levels of certain micro-ribonucleic acids (miRNAs) in the blood have been linked to the presence of cancer. While blood-based biomarkers have been used for years in cancer detection, studies analyzing trace amounts of miRNAs in blood and serum samples are just beginning. Recent developments in deoxyribonucleic acid (DNA) nanotechnology and DNA computing have shown that it is possible to construct nucleic-acid-based chemical networks that accept miRNAs as inputs, perform Boolean logic functions on those inputs, and generate as an output a large number of DNA strands that can readily be detected. Since miRNAs occur in blood in low abundance, these networks would allow for amplification without using polymerase chain reaction. In this study, we report initial progress in the development of a DNA-based cross-catalytic network engineered to amplify specific cancer-related miRNAs. Subcomponents of the DNA network were tested individually, and their operation in serum, as well as a mixture of serum with sodium dodecyl sulfate, is demonstrated. Preliminary simulations of the full cross-catalytic network indicate successful operation.
Collapse
Affiliation(s)
- Elton Graugnard
- Department of Materials Science & Engineering, Boise State University, Boise, ID 83725 USA
| | - Amber Cox
- Department of Materials Science & Engineering, Boise State University, Boise, ID 83725 USA
| | - Jeunghoon Lee
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID 83725 USA
| | - Cheryl Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725 USA
| | - Bernard Yurke
- Departments of Materials Science & Engineering and Electrical & Computer Engineering, Boise State University, Boise, ID 83725 USA
| | - William L. Hughes
- Department of Materials Science & Engineering, Boise State University, Boise, ID 83725 USA ()
| |
Collapse
|
18
|
Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol 2009; 2:15. [PMID: 19327156 PMCID: PMC2669152 DOI: 10.1186/1756-8722-2-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/27/2009] [Indexed: 12/22/2022] Open
Abstract
Human β-globin disorders are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing the expression of the γ-globin gene has great benefits in reducing complications associated with these diseases. The Oct-1 transcription factor is involved in the transcriptional regulation of the γ-globin gene. The human γ-globin genes (both Aγ and Gγ-globin genes) carry three Oct-1 transcription factor consensus sequences within their promoter regions. We have studied the possibility of inducing γ-globin gene expression using decoy oligonucleotides that target the Oct-1 transcription factor consensus sequence. A double-stranded 22 bp decoy oligonucleotide containing the Oct-1 consensus sequence was synthesized. The results obtained from our in vitro binding assay revealed a strong competitive binding of the decoy oligonucleotide for the Oct-1 transcription factor. When K562 human erythroleukemia cells were treated with the Oct-1 decoy oligonucleotide, significant increases in the level of the γ-globin mRNA were observed. The results of our western blots further demonstrated significant increases of the fetal hemoglobin (HbF, α2γ2) in the Oct-1 decoy oligonucleotide-treated K562 cells. The results of our immunoprecipitation (IP) studies revealed that the treatment of K562 cells with the Oct-1 decoy oligonucleotide significantly reduced the level of the endogenous γ-globin gene promoter region DNA co-precipitated with the Oct-1 transcription factor. These results suggest that the decoy oligonucleotide designed for the Oct-1 transcription factor consensus sequence could induce expression of the endogenous γ-globin gene through competitive binding of the Oct-1 transcription factor, resulting in activation of the γ-globin genes. Therefore, disrupting the bindings of the Oct-1 transcriptional factors with the decoy oligonucleotide provides a novel approach for inducing expression of the γ-globin genes. It also provides an innovative strategy for the treatment of many disease conditions, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Xiaoxin S Xu
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|