1
|
Zhang Z, Guo X, Hou W, Zou X, Wang Y, Liu S, Lu Z. User-Friendly Replication-Competent MAdV-1 Vector System with a Cloning Capacity of 3.3 Kilobases. Viruses 2024; 16:761. [PMID: 38793642 PMCID: PMC11126015 DOI: 10.3390/v16050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongjin Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shuqing Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
2
|
CELO Fiber1 Knob Is a Promising Candidate to Modify the Tropism of Adenoviral Vectors. Genes (Basel) 2022; 13:genes13122316. [PMID: 36553583 PMCID: PMC9778213 DOI: 10.3390/genes13122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Fowl adenovirus 4 (FAdV-4) has the potential to be constructed as a gene transfer vector for human gene therapy or vaccine development to avoid the pre-existing immunity to human adenoviruses. To enhance the transduction of FAdV-4 to human cells, CELO fiber1 knob (CF1K) was chosen to replace the fiber2 knob in FAdV-4 to generate recombinant virus F2CF1K-CG. The original FAdV4-CG virus transduced 4% human 293 or 1% HEp-2 cells at the multiplicity of infection of 1000 viral particles per cell. In contrast, F2CF1K-CG could transduce 98% 293 or 60% HEp-2 cells under the same conditions. Prokaryotically expressed CF1K protein blocked 50% transduction of F2CF1K-CG to 293 cells at a concentration of 1.3 µg/mL while it only slightly inhibited the infection of human adenovirus 5 (HAdV-5), suggesting CF1K could bind to human cells in a manner different from HAdV-5 fiber. The incorporation of CF1K had no negative effect on the growth of FAdV-4 in the packaging cells. In addition, CF1K-pseudotyped HAdV-41 could transduce HEp-2 and A549 cells more efficiently. These data indicated that CF1K had the priority to be considered when there is a need to modify adenovirus tropism.
Collapse
|
3
|
Wang H, Yang S, Liu J, Fu Z, Liu Y, Zhou L, Guo H, Lan K, Chen Y. Human adenoviruses: A suspect behind the outbreak of acute hepatitis in children amid the COVID-19 pandemic. CELL INSIGHT 2022; 1:100043. [PMID: 37192861 PMCID: PMC10120317 DOI: 10.1016/j.cellin.2022.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/18/2023]
Abstract
As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Guo X, Sun Y, Chen J, Zou X, Hou W, Tan W, Hung T, Lu Z. Restriction-Assembly: A Solution to Construct Novel Adenovirus Vector. Viruses 2022; 14:v14030546. [PMID: 35336953 PMCID: PMC8954691 DOI: 10.3390/v14030546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.
Collapse
Affiliation(s)
- Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Yangyang Sun
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, China
| | - Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenjie Tan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Chinese Center for Disease Control and Prevention–Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, China
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| |
Collapse
|
5
|
Yan B, Zou X, Liu X, Zhao J, Zhang W, Guo X, Wang M, Lv Y, Lu Z. User-Friendly Reverse Genetics System for Modification of the Right End of Fowl Adenovirus 4 Genome. Viruses 2020; 12:E301. [PMID: 32168853 PMCID: PMC7150739 DOI: 10.3390/v12030301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
A novel fowl adenovirus 4 (FAdV-4) has caused significant economic losses to the poultry industry in China since 2015. We established an easy-to-use reverse genetics system for modification of the whole right and partial left ends of the novel FAdV-4 genome, which worked through cell-free reactions of restriction digestion and Gibson assembly. Three recombinant viruses were constructed to test the assumption that species-specific viral genes of ORF4 and ORF19A might be responsible for the enhanced virulence: viral genes of ORF1, ORF1b and ORF2 were replaced with GFP to generate FAdV4-GFP, ORF4 was replaced with mCherry in FAdV4-GFP to generate FAdV4-GX4C, and ORF19A was deleted in FAdV4-GFP to generate FAdV4-CX19A. Deletion of ORF4 made FAdV4-GX4C form smaller plaques while ORF19A deletion made FAdV4-CX19A form larger ones on chicken LMH cells. Coding sequence (CDS) replacement with reporter mCherry demonstrated that ORF4 had a weak promoter. Survival analysis showed that FAdV4-CX19A-infected chicken embryos survived one more day than FAdV4-GFP- or FAdV4-GX4C-infected ones. The results illustrated that ORF4 and ORF19A were non-essential genes for FAdV-4 replication although deletion of either gene influenced virus growth. This work would help function study of genes on the right end of FAdV-4 genome and facilitate development of attenuated vaccines.
Collapse
Affiliation(s)
- Bingyu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Xiaohui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Xinglong Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Jiaming Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Department of Laboratory Medicine, School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Department of Laboratory Medicine, School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Xiaojuan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
| | - Yingtao Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (B.Y.); (X.L.)
| | - Zhuozhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.Z.); (J.Z.); (W.Z.); (X.G.); (M.W.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, China
| |
Collapse
|
6
|
Gao J, Mese K, Bunz O, Ehrhardt A. State‐of‐the‐art human adenovirus vectorology for therapeutic approaches. FEBS Lett 2019; 593:3609-3622. [DOI: 10.1002/1873-3468.13691] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Gao
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Kemal Mese
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Oskar Bunz
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Anja Ehrhardt
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| |
Collapse
|
7
|
Guo X, Mei L, Yan B, Zou X, Hung T, Lu Z. Site-directed modification of adenoviral vector with combined DNA assembly and restriction-ligation cloning. J Biotechnol 2019; 307:193-201. [PMID: 31751597 DOI: 10.1016/j.jbiotec.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
Abstract
Commonly used and well accepted approaches are lacking for site-directed modification of adenoviral vectors. Here, we attempt to introduce an easy-to-implement strategy for such purpose with an example of establishing a replication competent adenoviral vector system from pKAd5 plasmid, an infectious clone of human adenovirus 5 (HAdV-5). PCR products of GFP expression cassette and plasmid backbone were fused with the EcoRI/NdeI-digested fragment of pKAd5 to generate a modified intermediate plasmid pMDXE3GA by DNA assembly. NdeI-digested fragment of pMDXE3GA was brought back to pKAd5 to form the adenoviral plasmid pKAd5XE3GA by restriction-ligation cloning. Recombinant adenovirus HAdV5-XE3GA was rescued, amplified and purified. The expression of GFP and the propagation of virus in adherent HEp-2 and suspension K562 cells were investigated. Expression of target gene was significantly enhanced in both cell lines infected with HAdV5-XE3GA due to virus replication. However, propagation of virus could not sustain in culture of K562 cells. Shuttle plasmid pSh5RC-GFP was constructed to facilitate exchange of transgene. In summary, the strategy of combined DNA assembly and restriction-ligation cloning is functional, cost-effective and suitable for genetic modification of adenovirus.
Collapse
Affiliation(s)
- Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Lingling Mei
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; School of Public Health and Management, Weifang Medical University, Weifang, 261053, China
| | - Bingyu Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan, 430071, China.
| |
Collapse
|
8
|
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, Weaver EA, Tuaillon E, Kremer EJ. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18:597-613. [PMID: 31132024 DOI: 10.1080/14760584.2019.1588113] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types correlate with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types vectors with lower seroprevalence. However, global seroepidemiological data are incomplete. Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs types that are currently used in the clinic, or are in the developmental pipeline. Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-based vaccines have undeniable potential, but optimization is needed and antivector immunity remains a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps in our knowledge and the need for updated worldwide epidemiological data.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Océane Paris
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Aline Raissa Ouoba
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France.,b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Sofia Salazar Arenas
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Sodiomon B Sirima
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso.,e Groupe de Recherche Action en Santé (GRAS) , Ouagadougou , Burkina Faso
| | - Guy R Takoudjou Dzomo
- f Complexe Hospitalo Universitaire « Le Bon Samaritain » , N'Djamena , Republic of Chad
| | - Amidou Diarra
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Isidore T Traore
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Dramane Kania
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Karsten Eichholz
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Eric A Weaver
- g University of Nebraska-Lincoln, School of Biological Sciences , Lincoln , NE , USA
| | - Edouard Tuaillon
- b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| | - Eric J Kremer
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| |
Collapse
|
9
|
Zou XH, Bi ZX, Guo XJ, Zhang Z, Zhao Y, Wang M, Zhu YL, Jie HY, Yu Y, Hung T, Lu ZZ. ☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus. J Virol Methods 2018; 257:85-92. [PMID: 29703616 DOI: 10.1016/j.jviromet.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
Plasmid bearing adenovirus genome is generally constructed with the method of homologous recombination in E. coli BJ5183 strain. Here, we utilized Gibson gene assembly technique to generate infectious clone of fowl adenovirus 4 (FAdV-4). Primers flanked with partial inverted terminal repeat (ITR) sequence of FAdV-4 were synthesized to amplify a plasmid backbone containing kanamycin-resistant gene and pBR322 origin (KAN-ORI). DNA assembly was carried out by combining the KAN-ORI fragment, virus genomic DNA and DNA assembly master mix. E. coli competent cells were transformed with the assembled product, and plasmids (pKFAV4) were extracted and confirmed to contain viral genome by restriction analysis and sequencing. Virus was successfully rescued from linear pKFAV4-transfected chicken LMH cells. This approach was further verified in cloning of human adenovirus 5 genome. Our results indicated that DNA assembly technique simplified the construction of infectious clone of adenovirus, suggesting its possible application in virus traditional or reverse genetics.
Collapse
Affiliation(s)
- Xiao-Hui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhi-Xiang Bi
- National Veterinary Product Engineering Research Center, Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiao-Juan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yang Zhao
- National Veterinary Product Engineering Research Center, Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Ya-Lu Zhu
- National Veterinary Product Engineering Research Center, Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Hong-Ying Jie
- National Veterinary Product Engineering Research Center, Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yang Yu
- National Veterinary Product Engineering Research Center, Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Tao Hung
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhuo-Zhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| |
Collapse
|
10
|
Yang WX, Zou XH, Jiang SY, Lu NN, Han M, Zhao JH, Guo XJ, Zhao SC, Lu ZZ. Prevalence of serum neutralizing antibodies to adenovirus type 5 (Ad5) and 41 (Ad41) in children is associated with age and sanitary conditions. Vaccine 2017; 34:5579-5586. [PMID: 27682509 PMCID: PMC7115419 DOI: 10.1016/j.vaccine.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Serum neutralizing antibodies to Ad5 and Ad41 in adults and children were titrated. Prevalence of NAb in children was associated with age and sanitary conditions. NAb titer distribution pattern was very different between Ad5 an Ad41. Ad41 vectored vaccine candidates might have a bright future.
Neutralizing antibody (NAb) can dampen the immunogenicity of adenovirus (Ad) vector-based vaccine. Vector systems based on human adenovirus type 41 (Ad41) have been constructed and used to develop recombinant vaccines. Here, we attempted to study the seroprevalence of NAbs to Ad5 and Ad41 among children and adults in Qinghai province, China. The positive rates (titer ⩾ 40) of Ad5 and Ad41 NAb in adults from Xining city were 75.7% and 94.7%, respectively. The moderate/high-positive rates (titer ⩾ 160) of NAb were quite close between the two viruses in adults (70.4% for Ad5 and 73.5% for Ad41). Age-dependent increase of NAb seroprevalence was observed for both viruses in children. NAb-positive rate of Ad41 reached 50% at 3.3–4.6 years of age for children from Chengxi district, Xining city, approximately 1.5 years earlier than that of Ad5 did. Interestingly, NAb level was also associated with sanitary conditions among young children. For Ad5, 8–15% children (0.2–3.0 years of age) from city or town, where the sanitations were relatively better, had moderate/high-positive NAb, while the same rate was 62% for children from villages. For Ad41, 22% children from city, 47% from town and 88% from villages possessed moderate/high-positive NAb. The possible influence of NAb titer distributions on the application of Ad41-vectored vaccines was discussed in detail. Our results suggested that children from places with poor sanitations should be included for comprehensive Ad NAb seroprevalence studies, and provided insights to the applications of Ad41 vectors.
Collapse
Affiliation(s)
- Wei-Xiong Yang
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Xiao-Hui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shuang-Ying Jiang
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Nan-Nan Lu
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Mei Han
- Qinghai Provincial Kangle Hospital, Xining, Qinghai 810006, China
| | - Jian-Hai Zhao
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Xiao-Juan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Sheng-Cang Zhao
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China.
| | - Zhuo-Zhuang Lu
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| |
Collapse
|
11
|
Li P, Yang L, Guo J, Zou W, Xu X, Yang X, Du X, Qiu S, Song H. Circulation of HAdV-41 with diverse genome types and recombination in acute gastroenteritis among children in Shanghai. Sci Rep 2017; 7:3548. [PMID: 28615624 PMCID: PMC5471248 DOI: 10.1038/s41598-017-01293-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human adenovirus F (HAdV-F) is one of the major causative species detected in acute gastroenteritis in children worldwide. HAdV-F is composed of serotypes 40 and 41. Most studies have reported the prevalence of HAdV-41 and focused on its epidemiologic characteristics. In this study, seventeen samples were identified as HAdV-41 out of 273 fecal specimens from children with acute diarrhea in Shanghai. Five isolates were isolated and subjected to whole genome sequencing and analysis to characterize the genetic variation and evolution. Full genome analysis revealed low genetic variation (99.07-99.92% identity) among the isolates, and InDels are observed in the E2A gene and the hexon gene compared to the reference strain NIVD103. Phylogenetic analysis showed that all isolates mainly formed two genome-type clusters but with incongruence in the trees of whole genomes and individual genes. The recombination breakpoints of the five isolates were inferred by the Recombination Detection Program (RDP) and varied in the number and location of the recombination events, indicating different evolution origins. Overall, our study highlights the genetic diversity of HAdV-41 isolates circulating in Shanghai, which may have evolved from inter-strain recombination.
Collapse
Affiliation(s)
- Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lang Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jiayin Guo
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, 200051, China
| | - Wenwei Zou
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
| | - Xuebin Xu
- Shanghai Center for Disease Control and Prevention, Shanghai, 200236, China
| | - Xiaoxia Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
12
|
Choi J, Kim MG, Oh YK, Kim YB. Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review. Expert Opin Ther Pat 2017; 27:721-731. [PMID: 28121202 DOI: 10.1080/13543776.2017.1281248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a new pathogen, causing severe complications and a high case fatality rate. No direct treatments are available as yet, highlighting the importance of prevention through suitable vaccination regimes. The viral spike (S) protein has been characterized as a key target antigen for vaccines. In particular, S protein domains have been utilized to produce high titers of neutralizing antibodies. Areas covered: Since the first report of MERS-CoV infection, a limited number of MERS-CoV-specific patents have been filed. Patents related to MERS-CoV are categorized into three areas: treatments, antibodies, and vaccines (receptor-related). This review mainly focuses on the types and efficacies of vaccines, briefly covering treatments and antibodies against the virus. MERS-CoV vaccine forms and delivery systems, together with comparable development strategies against SARS-CoV are additionally addressed. Expert opinion: Vaccines must be combined with delivery systems, administration routes, and adjuvants to maximize T-cell responses as well as neutralizing antibody production. High immune responses require further study in animal models, such as human receptor-expressing mice, non-human primates, and camels. Such a consideration of integrated actions should contribute to the rapid development of vaccines against MERS-CoV and related coronaviruses.
Collapse
Affiliation(s)
- Jiwon Choi
- a College of Animal Bioscience & Technology , Konkuk University , Seoul , Republic of Korea
| | - Mi-Gyeong Kim
- b College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yu-Kyoung Oh
- b College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Young Bong Kim
- a College of Animal Bioscience & Technology , Konkuk University , Seoul , Republic of Korea
| |
Collapse
|
13
|
Yumul R, Richter M, Lu ZZ, Saydaminova K, Wang H, Wang CHK, Carter D, Lieber A. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models. Hum Gene Ther 2016; 27:325-37. [PMID: 26993072 DOI: 10.1089/hum.2016.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses.
Collapse
Affiliation(s)
- Roma Yumul
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Maximilian Richter
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Zhuo-Zhuang Lu
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,2 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, PR China
| | - Kamola Saydaminova
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Hongjie Wang
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | | | - Darrick Carter
- 4 Compliment Corp. , Seattle, Washington.,5 PAI Life Sciences Inc. , Seattle, Washington
| | - André Lieber
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,4 Compliment Corp. , Seattle, Washington.,6 Department of Pathology, University of Washington , Seattle, Washington
| |
Collapse
|
14
|
Shi H, Xagoraraki I, Parent KN, Bruening ML, Tarabara VV. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration. Appl Environ Microbiol 2016; 82:4982-93. [PMID: 27287319 PMCID: PMC4968539 DOI: 10.1128/aem.00870-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rpre (PEM) = 74.8% ± 9.7%) than with CS-blocked membranes (rpre (CS) = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpost (PEM) = 99.5% ± 6.6% and rpost (CS) = 98.8% ± 7.7%) and tap water (rpost (PEM) = 89% ± 15% and rpost (CS) = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpost (CS) = 88.6% ± 4.3% and rpost (PEM) = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery.
Collapse
Affiliation(s)
- Hang Shi
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Merlin L Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Guo X, Deng Y, Chen H, Lan J, Wang W, Zou X, Hung T, Lu Z, Tan W. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology 2015; 145:476-84. [PMID: 25762305 PMCID: PMC4515128 DOI: 10.1111/imm.12462] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 12/28/2022] Open
Abstract
An ideal vaccine against mucosal pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) should confer sustained, protective immunity at both systemic and mucosal levels. Here, we evaluated the in vivo systemic and mucosal antigen-specific immune responses induced by a single intramuscular or intragastric administration of recombinant adenoviral type 5 (Ad5) or type 41 (Ad41) -based vaccines expressing the MERS-CoV spike (S) protein. Intragastric administration of either Ad5-S or Ad41-S induced antigen-specific IgG and neutralizing antibody in serum; however, antigen-specific T-cell responses were not detected. In contrast, after a single intramuscular dose of Ad5-S or Ad41-S, functional antigen-specific T-cell responses were elicited in the spleen and pulmonary lymphocytes of the mice, which persisted for several months. Both rAd-based vaccines administered intramuscularly induced systemic humoral immune responses (neutralizing IgG antibodies). Our results show that a single dose of Ad5-S- or Ad41-S-based vaccines represents an appealing strategy for the control of MERS-CoV infection and transmission.
Collapse
Affiliation(s)
- Xiaojuan Guo
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jiaming Lan
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Wen Wang
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Xiaohui Zou
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Tao Hung
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Zhuozhuang Lu
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
16
|
Zou XH, Li WJ, Guo XJ, Qu JG, Wang M, Si HL, Lu ZZ, Hung T. Inefficient export of viral late mRNA contributes to fastidiousness of human adenovirus type 41 (HAdV-41) in 293 cells. Virology 2014; 468-470:388-396. [PMID: 25240325 DOI: 10.1016/j.virol.2014.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 01/29/2023]
Abstract
The human adenovirus (HAdV) early protein E1B55K interacts with E4orf6 to form an E3 ubiquitin ligase complex, which plays key roles in virus replication. To illustrate the reason for the fastidiousness of HAdV-41 in 293 cells, interaction between heterotypic E1B55K and E4orf6 proteins was investigated. HAdV-5 E1B55K could interact with HAdV-41 E4orf6, and vice versa. To form E1B55K/E4orf6 E3 ubiquitin ligase, HAdV-41 E4orf6 recruited Cul2 while HAdV-5 E4orf6 interacted with Cul5. The ligase complex formed by HAdV-5 E1B55K and HAdV-41 E4orf6 could cause the degradation of p53 and Mre11. However, in E1-deleted HAdV-41-infected 293TE7 cells, which expressed HAdV-41 E1B55K, viral late mRNAs were exported from nucleus more efficiently and accumulated to a higher concentration in cytoplasm when compared with that in infected 293 cells. These results suggested that interaction between homotypic E1B55K and E4orf6 was indispensable for efficient export of viral late mRNAs.
Collapse
Affiliation(s)
- Xiao-Hui Zou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wen-Jia Li
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiao-Juan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Jian-Guo Qu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Min Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Hong-Li Si
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Zhuo-Zhuang Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Tao Hung
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
17
|
Rodríguez E, Romero C, Río A, Miralles M, Raventós A, Planells L, Burgueño JF, Hamada H, Perales JC, Bosch A, Gassull MA, Fernández E, Chillon M. Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions. Hum Gene Ther Methods 2013; 24:195-204. [PMID: 23746215 DOI: 10.1089/hgtb.2012.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of vectors for selective gene delivery to the intestine has hampered the development of gene therapy strategies for intestinal diseases. We hypothesized that chimeric adenoviruses of Ad5 (species C) displaying proteins of the naturally enteric Ad40 (species F) might hold the intestinal tropism of the species F and thus be useful for gene delivery to the intestine. As oral-fecal dissemination of enteric adenovirus must withstand the conditions encountered in the gastrointestinal tract, we studied the resistance of chimeric Ad5 carrying the short-fiber protein of Ad40 to acid milieu and proteases and found that the Ad40 short fiber confers resistance to inactivation in acidic conditions and that AdF/40S was further activated upon exposure to low pH. In contrast, the chimeric AdF/40S exhibited only a slightly higher protease resistance compared with Ad5 to proteases present in simulated gastric juice. Then, the biodistribution of different chimeric adenoviruses by oral, rectal, and intravenous routes was tested. Expression of reporter β-galactosidase was measured in extracts of 15 different organs 3 days after administration. Our results indicate that among the chimeric viruses, only intrarectally given AdF/40S infected the colon (preferentially enteroendocrine cells and macrophages) and to a lesser extent, the small intestine, whereas Ad5 infectivity was very poor in all tissues. Additional in vitro experiments showed improved infectivity of AdF/40S also in different human epithelial cell lines. Therefore, our results point at the chimeric adenovirus AdF/40S as an interesting vector for selective gene delivery to treat intestinal diseases.
Collapse
Affiliation(s)
- Ester Rodríguez
- Centre de Biotecnologia Animal i Teràpia Gènica (CBATEG), Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Barcelona 08193, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu ZZ, Zou XH, Lastinger K, Williams A, Qu JG, Estes DM. Enhanced growth of recombinant human adenovirus type 41 (HAdV-41) carrying ADP gene. Virus Res 2013; 176:61-8. [PMID: 23769974 DOI: 10.1016/j.virusres.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
Human adenovirus type 41 (HAdV-41) has the potential to be constructed as a gene transfer vector for oral vaccine or gene therapy targeting gastrointestinal tract. Block in release of progeny virus from host cell severely affects the yield during virus amplification. In this study, HAdV-5 adenovirus death protein (ADP) gene was used to replace the open reading frames (ORFs) of the HAdV-41 E3 region to construct a backbone plasmid pAdbone41ADP. Recombinant adenoviral plasmids harboring ADP and GFP genes (pAd41ADP-GFP) were generated. Plaques were formed and HAdV-41-ADP-GFP virus was rescued after transfecting pAd41ADP-GFP into the packaging cell line 293TE32. When amplified on 293TE32 cells, HAdV-41-ADP-GFP virus released to the culture medium was 10-50 times more than control virus HAdV-41-GFP, which did not carry ADP gene. The results demonstrated that incorporation of the ADP gene substantially increased the yield of recombinant HAdV-41 virus through enhancing spread of progeny virus among packaging cells.
Collapse
Affiliation(s)
- Zhuo-Zhuang Lu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
19
|
Song JD, Liu XL, Chen DL, Zou XH, Wang M, Qu JG, Lu ZZ, Hung T. Human adenovirus type 41 possesses different amount of short and long fibers in the virion. Virology 2012; 432:336-42. [DOI: 10.1016/j.virol.2012.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
20
|
Wu J, Liu W, Li Y, Schroeder B, Zhou H, Liu D, Yue X, Shi G, Sun X, Zhao Y, Wang Y, Qiu X. Construction of recombinant adenovirus vector with connexin 43 gene. Acta Biochim Biophys Sin (Shanghai) 2012; 44:894-5. [PMID: 22951570 DOI: 10.1093/abbs/gms069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jin Wu
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miralles M, Segura MM, Puig M, Bosch A, Chillon M. Efficient amplification of chimeric adenovirus 5/40S vectors carrying the short fiber protein of Ad40 in suspension cell cultures. PLoS One 2012; 7:e42073. [PMID: 22860056 PMCID: PMC3409147 DOI: 10.1371/journal.pone.0042073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/02/2012] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus 40 (Ad40) is a promising tool for gene therapy of intestinal diseases. Since the production of Ad40 in vitro is extremely inefficient, chimeric Adenovirus 5/40S vectors carrying the Ad40 short fiber on the Ad5 capsid have been developed. However, Ad5/40S productivity is low. We hypothesized that low productivity was a result of inefficient viral entry into producer cells during amplification. To this end, we have developed a production strategy based on using 211B cells (expressing Ad5 fiber) during amplification steps, while Ad5/40S infectivity is further improved by adding polybrene during infections. In addition, the optimal harvesting time was determined by evaluating the Ad5/40S viral cycle. The developed production strategy significantly reduces the number of amplification cycles and duration of the process. Finally, to further facilitate Ad5/40S production, 211B cells were adapted to suspension thus allowing to easily upscale the production process in bioreactors.
Collapse
Affiliation(s)
- Marta Miralles
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Mercedes Segura
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Puig
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Assumpció Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillon
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Chen DL, Dong LX, Li M, Guo XJ, Wang M, Liu XF, Lu ZZ, Hung T. Construction of an infectious clone of human adenovirus type 41. Arch Virol 2012; 157:1313-21. [DOI: 10.1007/s00705-012-1293-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/22/2012] [Indexed: 11/28/2022]
|
23
|
Zou XH, Xiao X, Chen DL, Li ZL, Song JD, Wang M, Qu JG, Lu ZZ, Hung T. An improved HAdV-41 E1B55K-expressing 293 cell line for packaging fastidious adenovirus. J Virol Methods 2011; 175:188-96. [DOI: 10.1016/j.jviromet.2011.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|