1
|
Oh SJ, Lee HJ, Song KH, Kim S, Cho E, Lee J, Bosenberg MW, Kim TW. Targeting NANOG/HDAC1 axis reverses resistance to PD-1 blockade by reinvigorating anti-tumor immunity cycle. J Clin Invest 2022; 132:147908. [PMID: 35104240 PMCID: PMC8920337 DOI: 10.1172/jci147908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses because of the emergence of immune-refractory tumors that disrupt the amplification of antitumor immunity. Therefore, the identification of clinically available targets that restrict antitumor immunity is required to develop potential combination therapies. Here, using transcriptomic data on patients with cancer treated with programmed cell death protein 1 (PD-1) therapy and newly established mouse preclinical anti–PD-1 therapy–refractory models, we identified NANOG as a factor restricting the amplification of the antitumor immunity cycle, thereby contributing to the immune-refractory feature of the tumor microenvironment (TME). Mechanistically, NANOG induced insufficient T cell infiltration and resistance to CTL-mediated killing via the histone deacetylase 1–dependent (HDAC1-dependent) regulation of CXCL10 and MCL1, respectively. Importantly, HDAC1 inhibition using an actionable agent sensitized NANOGhi immune-refractory tumors to PD-1 blockade by reinvigorating the antitumor immunity cycle. Thus, our findings implicate the NANOG/HDAC1 axis as a central molecular target for controlling immune-refractory tumors and provide a rationale for combining HDAC inhibitors to reverse the refractoriness of tumors to ICB therapy.
Collapse
Affiliation(s)
- Se Jin Oh
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Hyo-Jung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, Korea, Republic of
| | - Suyeon Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Eunho Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Jaeyoon Lee
- College of Social Sciences and Humanities, Northeastern University, Boston, United States of America
| | - Marcus W Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, United States of America
| | - Tae Woo Kim
- Korea University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
2
|
Williams MM, Christenson JL, O'Neill KI, Hafeez SA, Ihle CL, Spoelstra NS, Slansky JE, Richer JK. MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer. NPJ Breast Cancer 2021; 7:64. [PMID: 34045467 PMCID: PMC8160264 DOI: 10.1038/s41523-021-00273-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Many immune suppressive mechanisms utilized by triple negative breast cancer (TNBC) are regulated by oncogenic epithelial-to-mesenchymal transition (EMT). How TNBC EMT impacts innate immune cells is not fully understood. To determine how TNBC suppresses antitumor macrophages, we used microRNA-200c (miR-200c), a powerful repressor of EMT, to drive mesenchymal-like mouse mammary carcinoma and human TNBC cells toward a more epithelial state. MiR-200c restoration significantly decreased growth of mouse mammary carcinoma Met-1 cells in culture and in vivo. Cytokine profiling of Met-1 and human BT549 cells revealed that miR-200c upregulated cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), promoted M1 antitumor macrophage polarization. Cytokines upregulated by miR-200c correlated with an epithelial gene signature and M1 macrophage polarization in BC patients and predicted a more favorable overall survival for TNBC patients. Our findings demonstrate that immunogenic cytokines (e.g., GM-CSF) are suppressed in aggressive TNBC, warranting further investigation of cytokine-based therapies to limit disease recurrence.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sabrina A Hafeez
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill E Slansky
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Arginase/nitric oxide modifications using live non-pathogenic Leishmania tarentolae as an effective delivery system inside the mammalian macrophages. J Parasit Dis 2021; 45:65-71. [PMID: 33746388 DOI: 10.1007/s12639-020-01279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
Recombinant live delivery system based on chemokine IFN-γ-inducible protein-10 kDa (CXCL 10 or IP-10), as a suitable immunotherapy tool, have been used for the treatment of Leishmania infections. This chemokine can defeat Leishmania spp. infection via producing nitric oxide (NO) for parasite killing. This study was performed to investigate the effects of IP-10 on the infected human macrophages by L. tarentolae expressing IP-10. We also quantified the arginase activity and NO production in the co-cultured human macrophages with L. tarentolae expressing IP-10 as compared with wild L. tarentolae. The results elucidate that in the infected cells with L. tarentolae expression of IP-10 the arginase activity decreased, and inversely, NO production intensely increased. Altogether, L. tarentolae expressing IP-10 shows a favorable therapeutic tool to improve the treatment of Leishmania infection. This work suggests that L. tarentolae expressing IP-10 cause specific effects on the metabolic pathways of the macrophage host, which might enable the host cells in killing of parasites and decreasing the survival of them against Leishmania infection.
Collapse
|
4
|
Verma A, Schmidt BA, Elizaldi SR, Nguyen NK, Walter KA, Beck Z, Trinh HV, Dinasarapu AR, Lakshmanappa YS, Rane NN, Matyas GR, Rao M, Shen X, Tomaras GD, LaBranche CC, Reimann KA, Foehl DH, Gach JS, Forthal DN, Kozlowski PA, Amara RR, Iyer SS. Impact of T h1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. J Virol 2020; 94:e01737-19. [PMID: 31827000 PMCID: PMC7158739 DOI: 10.1128/jvi.01737-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Anil Verma
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Brian A Schmidt
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Sonny R Elizaldi
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- Graduate Group in Immunology, UC Davis, Davis, California, USA
| | - Nancy K Nguyen
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zoltan Beck
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ashok R Dinasarapu
- Emory Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Niharika N Rane
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Keith A Reimann
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - David H Foehl
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S Iyer
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- California National Primate Research Center, School of Veterinary Medicine, UC Davis, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
5
|
Rechtien A, Richert L, Lorenzo H, Martrus G, Hejblum B, Dahlke C, Kasonta R, Zinser M, Stubbe H, Matschl U, Lohse A, Krähling V, Eickmann M, Becker S, Thiébaut R, Altfeld M, Addo MM. Systems Vaccinology Identifies an Early Innate Immune Signature as a Correlate of Antibody Responses to the Ebola Vaccine rVSV-ZEBOV. Cell Rep 2018; 20:2251-2261. [PMID: 28854372 PMCID: PMC5583508 DOI: 10.1016/j.celrep.2017.08.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 06/21/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023] Open
Abstract
Predicting vaccine efficacy remains a challenge. We used a systems vaccinology approach to identify early innate immune correlates of antibody induction in humans receiving the Ebola vaccine rVSV-ZEBOV. Blood samples from days 0, 1, 3, 7, and 14 were analyzed for changes in cytokine levels, innate immune cell subsets, and gene expression. Integrative statistical analyses with cross-validation identified a signature of 5 early innate markers correlating with antibody titers on day 28 and beyond. Among those, IP-10 on day 3 and MFI of CXCR6 on NK cells on day 1 were independent correlates. Consistently, we found an early gene expression signature linked to IP-10. This comprehensive characterization of early innate immune responses to the rVSV-ZEBOV vaccine in humans revealed immune signatures linked to IP-10. These results suggest correlates of vaccine-induced antibody induction and provide a rationale to explore strategies for augmenting the effectiveness of vaccines through manipulation of IP-10. 5 early innate markers correlate with antibody response to Ebola vaccine rVSV-ZEBOV IP-10 on day 3 after vaccination is an independent correlate of antibody induction RNA-seq analysis identifies early gene expression signature linked to IP-10
Collapse
Affiliation(s)
- Anne Rechtien
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany.
| | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; INSERM U1219, INRIA SISTM, Bordeaux University, Bordeaux, France; Vaccine Research Institute, Creteil, France
| | - Hadrien Lorenzo
- INSERM U1219, INRIA SISTM, Bordeaux University, Bordeaux, France; Vaccine Research Institute, Creteil, France
| | - Gloria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Boris Hejblum
- INSERM U1219, INRIA SISTM, Bordeaux University, Bordeaux, France; Vaccine Research Institute, Creteil, France
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany
| | - Rahel Kasonta
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany
| | - Madeleine Zinser
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany
| | - Hans Stubbe
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany; Division of Infectious Diseases, Department of Medicine IV, LMU, 80336 Munich, Germany
| | - Urte Matschl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Ansgar Lohse
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany
| | - Verena Krähling
- Philipps University Marburg, Institute for Virology, 35043 Marburg, Germany
| | - Markus Eickmann
- Philipps University Marburg, Institute for Virology, 35043 Marburg, Germany
| | - Stephan Becker
- Philipps University Marburg, Institute for Virology, 35043 Marburg, Germany
| | | | - Rodolphe Thiébaut
- INSERM U1219, INRIA SISTM, Bordeaux University, Bordeaux, France; Vaccine Research Institute, Creteil, France
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Marylyn M Addo
- University Medical Center Hamburg-Eppendorf, 1(st) Department of Medicine, 20246 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Ramachandran M, Dimberg A, Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin Cancer Biol 2017; 45:23-35. [DOI: 10.1016/j.semcancer.2017.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/26/2017] [Indexed: 01/18/2023]
|
7
|
Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization. EBioMedicine 2017; 19:107-118. [PMID: 28434944 PMCID: PMC5440606 DOI: 10.1016/j.ebiom.2017.03.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The recent West African Ebola epidemic led to accelerated efforts to test Ebola vaccine candidates. As part of the World Health Organisation-led VSV Ebola Consortium (VEBCON), we performed a phase I clinical trial investigating rVSV-ZEBOV (a recombinant vesicular stomatitis virus-vectored Ebola vaccine), which has recently demonstrated protection from Ebola virus disease (EVD) in phase III clinical trials and is currently in advanced stages of licensing. So far, correlates of immune protection are incompletely understood and the role of cell-mediated immune responses has not been comprehensively investigated to date. Methods: We recruited 30 healthy subjects aged 18–55 into an open-label, dose-escalation phase I trial testing three doses of rVSV-ZEBOV (3 × 105 plaque-forming units (PFU), 3 × 106 PFU, 2 × 107 PFU) (ClinicalTrials.gov; NCT02283099). Main study objectives were safety and immunogenicity, while exploratory objectives included lymphocyte dynamics, cell-mediated immunity and cytokine networks, which were assessed using flow cytometry, ELISpot and LUMINEX assay. Findings: Immunization with rVSV-ZEBOV was well tolerated without serious vaccine-related adverse events. Ebola virus-specific neutralizing antibodies were induced in nearly all individuals. Additionally, vaccinees, particularly within the highest dose cohort, generated Ebola glycoprotein (GP)-specific T cells and initiated a cascade of signaling molecules following stimulation of peripheral blood mononuclear cells with Ebola GP peptides. Interpretation: In addition to a benign safety and robust humoral immunogenicity profile, subjects immunized with 2 × 107 PFU elicited higher cellular immune responses and stronger interlocked cytokine networks compared to lower dose groups. To our knowledge these data represent the first detailed cell-mediated immuneprofile of a clinical trial testing rVSV-ZEBOV, which is of particular interest in light of its potential upcoming licensure as the first Ebola vaccine. VEBCON trial Hamburg, Germany (NCT02283099). A phase I clinical trial was conducted to investigate the live-attenuated Ebola vaccine rVSV-ZEBOV. Ebola-specific humoral and cell-mediated immune responses show a favorable profile for subjects immunized with 2 × 107 PFU of rVSV-ZEBOV. The highest dose cohort induced stronger antigen-specific CTL-responses and interlocked cytokine networks compared to lower dose groups.
rVSV-ZEBOV is the first Ebola vaccine with human efficacy data, currently undergoing an accelerated licensing process. Nevertheless, to date no human immunological correlate of protection has been identified and mechanisms of immune responses elicited by rVSV-ZEBOV remain incompletely understood. We conducted a phase I trial to test rVSV-ZEBOV in 30 healthy subjects using three dosage levels. We here present a comprehensive evaluation of humoral and cell-mediated responses with an in-depth analysis of signaling molecules following ex vivo stimulation with Ebola GP peptides. Our data suggest a favorable immune response profile for subjects immunized with 2 × 107 PFU. These data address critical knowledge gaps with respect to mechanisms of immuneprotection in the context of Ebola vaccines and may provide additional evidence to support the current dosage used in later stage clinical trials.
Collapse
|
8
|
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2015; 10:3332-46. [PMID: 25483639 DOI: 10.4161/21645515.2014.973317] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches.
Collapse
Key Words
- APCs, antigen-presenting cell
- BCG, Bacille Calmette-Guerin
- BCR, B-cell receptor
- CDCA1, cell division cycle associated 1
- CRC, colorectal cancer
- CT, Cancer-testis
- CTL, cytotoxic T-lympocites
- DCs, dendritic cells
- EGT, electro-gene-transfer
- FDA, Food & drug administration
- GB, glioblastoma
- GM-CSF, granulocyte macrophage-colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HSPs, stress/heat shock proteins
- IFNg, interferon gamma
- Ig Id, immunoglobulin idiotype
- LPs, long peptides
- MAGE-A1, Melanoma-associated antigen 1
- MHC, major histocompatibility complex
- MS, mass spectrometry
- MVA, modified vaccinia strain Ankara
- NSCLC, non-small-cell lung carcinoma
- PAP, prostatic acid phosphatase
- PRRs, Pattern Recognition Receptors
- PSA, Prostate-specific antigen
- RCR, renal cell cancer
- SSX-2, Synovial sarcoma X breakpoint 2
- TAAs, tumor-associated antigens
- TACAs, Tumor-associated carbohydrate antigens
- TARP, T-cell receptor gamma alternate reading frame protein
- TLRs, Toll-Like Receptors
- TPA, transporter associated with antigen processing
- WES, whole exome sequencing
- WGS, whole genome sequencing
- cancer vaccine
- clinical trials
- epitopes
- hTERT, human Telomerase reverse transcriptase
- immunotherapeutics
- mCRPC, metastatic castrate-resistant prostate cancer
- tumor-associated antigens
Collapse
Affiliation(s)
- Maria Tagliamonte
- a Laboratory of Molecular Biology and Viral Oncology; Department of Experimental Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori; "Fondazione Pascale" - IRCCS ; Naples , Italy
| | | | | | | | | |
Collapse
|
9
|
Pupo E, Hamstra HJ, Meiring H, van der Ley P. Lipopolysaccharide engineering in Neisseria meningitidis: structural analysis of different pentaacyl lipid A mutants and comparison of their modified agonist properties. J Biol Chem 2014; 289:8668-80. [PMID: 24492609 PMCID: PMC3961689 DOI: 10.1074/jbc.m114.554345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
Engineering the lipopolysaccharide (LPS) biosynthetic pathway offers the potential to obtain modified derivatives with optimized adjuvant properties. Neisseria meningitidis strain H44/76 was modified by expression of the pagL gene encoding lipid A 3-O-deacylase from Bordetella bronchiseptica and by inactivation of the lgtB gene encoding the terminal oligosaccharide galactosyltransferase. Mass spectrometry analysis of purified mutant LPS was used for detailed compositional analysis of all present molecular species. This determined that the modified LPS was mainly pentaacylated, demonstrating high efficiency of conversion from the hexaacyl to the 3-O-deacylated form by heterologous lipid A 3-O-deacylase (PagL) expression. MS analyses also provided evidence for expression of only one major oligosaccharide glycoform, which lacked the terminal galactose residue as expected from inactivation of the lgtB gene. The immunomodulatory properties of PagL-deacylated LPS were compared with another pentaacyl form obtained from an lpxL1(-) mutant, which lacks the 2' secondary acyl chain. Although both LPS mutants displayed impaired capacity to induce production of the pro-inflammatory cytokine IL-6 in the monocytic cell line Mono Mac 6, induction of the Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-β-dependent chemokine interferon-γ-induced protein 10 was largely retained only for the lgtB(-)/pagL(+) mutant. Removal of remaining hexaacyl species exclusively present in lgtB(-)/pagL(+) LPS demonstrated that these minor species potentiate but do not determine the activity of this LPS. These results are the first to indicate a qualitatively different response of human innate cells to pentaacyl lpxL1(-) and pagL(+) LPS and show the importance of detailed structure-function analysis when working with modified lipid A structures. The pagL(+) LPS has significant potential as immune modulator in humans.
Collapse
Affiliation(s)
- Elder Pupo
- From the Institute for Translational Vaccinology and
| | - Hendrik-Jan Hamstra
- the National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Hugo Meiring
- From the Institute for Translational Vaccinology and
| | | |
Collapse
|
10
|
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 2014; 119:421-75. [PMID: 23870514 DOI: 10.1016/b978-0-12-407190-2.00007-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to treat late stage disease by using a patient's own immune system. The promising results from clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food and Drug Administration. This major breakthrough not only provides a new treatment modality for cancer management but also paves the way for rationally designing and optimizing future vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being evaluated both preclinically and clinically. This review discusses therapeutic cancer vaccines from diverse platforms or targets as well as the preclinical and clinical studies employing these therapeutic vaccines. We also consider tumor-induced immune suppression that hinders the potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for generating more robust and durable antitumor immune responses.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bobanga ID, Petrosiute A, Huang AY. Chemokines as Cancer Vaccine Adjuvants. Vaccines (Basel) 2013; 1:444-62. [PMID: 24967094 PMCID: PMC4067044 DOI: 10.3390/vaccines1040444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 02/07/2023] Open
Abstract
We are witnessing a new era of immune-mediated cancer therapies and vaccine development. As the field of cancer vaccines advances into clinical trials, overcoming low immunogenicity is a limiting step in achieving full success of this therapeutic approach. Recent discoveries in the many biological roles of chemokines in tumor immunology allow their exploitation in enhancing recruitment of antigen presenting cells (APCs) and effector cells to appropriate anatomical sites. This knowledge, combined with advances in gene therapy and virology, allows researchers to employ chemokines as potential vaccine adjuvants. This review will focus on recent murine and human studies that use chemokines as therapeutic anti-cancer vaccine adjuvants.
Collapse
Affiliation(s)
- Iuliana D. Bobanga
- Departments of General Surgery, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Agne Petrosiute
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Y. Huang
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Mol Immunol 2013; 53:149-60. [DOI: 10.1016/j.molimm.2012.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/18/2012] [Accepted: 07/26/2012] [Indexed: 12/23/2022]
|
13
|
Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL, Pearce EJ. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2151-8. [PMID: 22826320 PMCID: PMC3424310 DOI: 10.4049/jimmunol.1103741] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are potent inducers of T cell immunity, and autologous DC vaccination holds promise for the treatment of cancers and chronic infectious diseases. In practice, however, therapeutic vaccines of this type have had mixed success. In this article, we show that brief exposure to inhibitors of mechanistic target of rapamycin (mTOR) in DCs during the period that they are responding to TLR agonists makes them particularly potent activators of naive CD8+ T cells and able to enhance control of B16 melanoma in a therapeutic autologous vaccination model in the mouse. The improved performance of DCs in which mTOR has been inhibited is correlated with an extended life span after activation and prolonged, increased expression of costimulatory molecules. Therapeutic autologous vaccination with DCs treated with TLR agonists plus the mTOR inhibitor rapamycin results in improved generation of Ag-specific CD8+ T cells in vivo and improved antitumor immunity compared with that observed with DCs treated with TLR agonists alone. These findings define mTOR as a molecular target for augmenting DC survival and activation, and document a novel pharmacologic approach for enhancing the efficacy of therapeutic autologous DC vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immunotherapy, Adoptive/methods
- Lipopolysaccharides/physiology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/physiology
- Transplantation, Autologous
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Eyal Amiel
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kim JM, Kim JS, Yoo DY, Ko SH, Kim N, Kim H, Kim YJ. Stimulation of dendritic cells with Helicobacter pylori vacuolating cytotoxin negatively regulates their maturation via the restoration of E2F1. Clin Exp Immunol 2011; 166:34-45. [PMID: 21910723 DOI: 10.1111/j.1365-2249.2011.04447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori induces an infiltration of dendritic cells (DCs) into the infected gastric mucosa. Although DCs play an important role in the regulation of inflammation, the effects of H. pylori vacuolating cytotoxin (VacA) on DC maturation process have not yet been elucidated. The role of VacA in DC maturation following co-exposure to Escherichia coli lipopolysaccharide (LPS) was investigated. The treatment of immature DCs with LPS up-regulated the expression of surface molecules [e.g. CD40, CD80, CD86 and major histocompatibility complex (MHC) class II], as well as the production of cytokines [e.g. interleukin (IL)-1β, IL-12p70 and tumour necrosis gactor (TNF)-α] compared with those of unstimulated controls. Co-stimulation with H. pylori VacA significantly reduced the up-regulated DC maturation markers induced by LPS. In addition, VacA sustained the immature state of DCs with high endocytosis and low migratory capacity. The LPS-induced down-regulation of E2F1 expression in DCs was recovered by co-stimulation with VacA. Moreover, suppression of E2F1 by small interfering RNA resulted in a significant recovery of the inhibited DC maturation by VacA. In contrast, VacA did not affect nuclear factor (NF)-κB responses to LPS and the NF-κB signal was not associated with VacA-induced inhibition of DC maturation. These results suggest that the exposure of DCs to H. pylori VacA negatively regulates DC maturation via the restoration of E2F1. The immunomodulatory action of VacA on DCs may contribute to the ability of VacA-producing H. pylori to establish a persistent infection in the gastric mucosa.
Collapse
Affiliation(s)
- J M Kim
- Department of Microbiology, Hanyang University College of Medicine Department of Internal Medicine, Seoul National University College of Medicin Department of Food and Nutrition, Yonsei University, Seoul Department of Biotechnology, Joongbu University, Choongnam, Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22:121-30. [PMID: 21802343 PMCID: PMC3203691 DOI: 10.1016/j.cytogfr.2011.06.001] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C-X-C motif chemokine 10 (CXCL10) also known as interferon γ-induced protein 10 kDa (IP-10) or small-inducible cytokine B10 is a cytokine belonging to the CXC chemokine family. CXCL10 binds CXCR3 receptor to induce chemotaxis, apoptosis, cell growth and angiostasis. Alterations in CXCL10 expression levels have been associated with inflammatory diseases including infectious diseases, immune dysfunction and tumor development. CXCL10 is also recognized as a biomarker that predicts severity of various diseases. A review of the emerging role of CXCL10 in pathogenesis of infectious diseases revealed diverse roles of CXCL10 in disease initiation and progression. The potential utilization of CXCL10 as a therapeutic target for infectious diseases is discussed.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shanchun Guo
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jacqueline M. Hibbert
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vidhan Jain
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Neeru Singh
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Nana O. Wilson
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jonathan K. Stiles
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol Lett 2011; 2:583-589. [PMID: 22848232 DOI: 10.3892/ol.2011.300] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The chemokine interferon-γ inducible protein 10 kDa (CXCL10) is a member of the CXC chemokine family which binds to the CXCR3 receptor to exert its biological effects. CXCL10 is involved in chemotaxis, induction of apoptosis, regulation of cell growth and mediation of angiostatic effects. CXCL10 is associated with a variety of human diseases including infectious diseases, chronic inflammation, immune dysfuntion, tumor development, metastasis and dissemination. More importantly, CXCL10 has been identified as a major biological marker mediating disease severity and may be utilized as a prognostic indicator for various diseases. In this review, we focus on current research elucidating the emerging role of CXCL10 in the pathogenesis of cancer. Understanding the role of CXCL10 in disease initiation and progression may provide the basis for developing CXCL10 as a potential biomarker and therapeutic target for related human malignancies.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
17
|
Abstract
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed.
Collapse
|
18
|
Kang TH, Kim KW, Bae HC, Seong SY, Kim TW. Enhancement of DNA vaccine potency by antigen linkage to IFN-γ-inducible protein-10. Int J Cancer 2011; 128:702-14. [PMID: 20473881 DOI: 10.1002/ijc.25391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA vaccines have emerged as an attractive approach to generate antigen-specific T-cell immune response. Nevertheless, the potency of DNA vaccines still needs to be improved for cancer immunotherapy. In this study, we explored whether functional linkage of a Th1-polarizing chemokine, IP-10, to a model tumor antigen, human papillomavirus type 16 (HPV-16) E7, enhanced DNA vaccine potency. IP-10 linkage changed the location of E7 from the nucleus to the endoplasmic reticulum and led to the secretion of functionally chemoattractive chimeric IP-10/E7 protein. In addition, this linkage drastically enhanced the endogenous processing of E7 antigen through MHC class I. More importantly, we found that C57BL/6 mice intradermally vaccinated with IP-10/E7 DNA exhibited a dramatic increase in the number of E7-specific CD4(+) Th1 T-cells and CD8(+) T-cells and, consequently, were strongly resistant over the long term to E7-expressing tumors compared to mice vaccinated with wild-type E7 DNA. Thus, because of the increase in tumor antigen-specific T-cell immune responses obtained through both enhanced antigen presentation and chemoattraction, vaccination with DNA encoding IP-10 linked to a tumor antigen holds great promise for treating tumors.
Collapse
Affiliation(s)
- Tae Heung Kang
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | |
Collapse
|