1
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
2
|
Joshi PRH, Venereo-Sanchez A. Recombinant AAV Production. Methods Mol Biol 2024; 2829:203-214. [PMID: 38951336 DOI: 10.1007/978-1-0716-3961-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The insect cell-baculovirus expression vector (IC-BEV) platform has enabled small research-scale and large commercial-scale production of recombinant proteins and therapeutic biologics including recombinant adeno-associated virus (rAAV)-based gene delivery vectors. The wide use of this platform is comparable with other mammalian cell line-based platforms due to its simplicity, high-yield, comparable quality attributes, and robust bioprocessing features. In this chapter, we describe a rAAV production protocol employing one of the recent modifications of the One-Bac platform that consists of a stable transformed Sf9 cell line carrying AAV Rep2/Cap5 genes that are induced upon infection with a single recombinant baculovirus expression vector harboring the transgene of interest (rAAV genome). The overall protocol consists of essential steps including rBEV working stock preparation, rAAV production, and centrifugation-based clarification of cell culture lysate. The same protocol can also be applied for rAAV vector production using traditional Three-Bac, Two-Bac, and Mono-Bac platforms without requiring significant changes.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Destro F, Joseph J, Srinivasan P, Kanter JM, Neufeld C, Wolfrum JM, Barone PW, Springs SL, Sinskey AJ, Cecchini S, Kotin RM, Braatz RD. Mechanistic modeling explains the production dynamics of recombinant adeno-associated virus with the baculovirus expression vector system. Mol Ther Methods Clin Dev 2023; 30:122-146. [PMID: 37746245 PMCID: PMC10512016 DOI: 10.1016/j.omtm.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/30/2023] [Indexed: 09/26/2023]
Abstract
Current manufacturing processes for recombinant adeno-associated viruses (rAAVs) have less-than-desired yields and produce significant amounts of empty capsids. The increasing demand and the high cost of goods for rAAV-based gene therapies motivate development of more efficient manufacturing processes. Recently, the US Food and Drug Administration (FDA) approved the first rAAV-based gene therapy product manufactured in the baculovirus expression vector system (BEVS), a technology that demonstrated production of high titers of full capsids. This work presents a first mechanistic model describing the key extracellular and intracellular phenomena occurring during baculovirus infection and rAAV maturation in the BEVS. The model predictions are successfully validated for in-house and literature experimental measurements of the vector genome and of structural and non-structural proteins collected during rAAV manufacturing in the BEVS with the TwoBac and ThreeBac constructs. A model-based analysis of the process is carried out to identify the bottlenecks that limit full capsid formation. Vector genome amplification is found to be the limiting step for rAAV production in Sf9 cells using either the TwoBac or ThreeBac system. In turn, vector genome amplification is hindered by limiting Rep78 levels. Transgene and non-essential baculovirus protein expression in the insect cell during rAAV manufacturing also negatively influences the rAAV production yields.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua M. Kanter
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline M. Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul W. Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacy L. Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony J. Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvain Cecchini
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Robert M. Kotin
- Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Carbon Biosciences, Waltham, MA 02451, USA
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Moço PD, Xu X, Silva CAT, Kamen AA. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities. Biotechnol J 2023; 18:e2300051. [PMID: 37337925 DOI: 10.1002/biot.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 106 viral genomes (VG), making large-scale production of AAV6 necessary. Suspension cell-based platforms are currently limited to low cell density productions due to the widely reported cell density effect (CDE), which results in diminished production at high cell densities and decreased cell-specific productivity. This limitation hinders the potential of the suspension cell-based production process to increase yields. In this study, we investigated the improvement of the production of AAV6 at higher cell densities by transiently transfecting HEK293SF cells. The results showed that when the plasmid DNA was provided on a cell basis, the production could be carried out at medium cell density (MCD, 4 × 106 cells mL-1 ) resulting in titers above 1010 VG mL-1 . No detrimental effects on cell-specific virus yield or cell-specific functional titer were observed at MCD production. Furthermore, while medium supplementation alleviated the CDE in terms of VG/cell at high cell density (HCD, 10 × 106 cells mL-1 ) productions, the cell-specific functional titer was not maintained, and further studies are necessary to understand the observed limitations for AAV production in HCD processes. The MCD production method reported here lays the foundation for large-scale process operations, potentially solving the current vector shortage in AAV manufacturing.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Cristina A T Silva
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Rao R, Farraha M, Logan GJ, Igoor S, Kok CY, Chong JJH, Alexander IE, Kizana E. Performance of Cardiotropic rAAV Vectors Is Dependent on Production Method. Viruses 2022; 14:v14081623. [PMID: 35893689 PMCID: PMC9341392 DOI: 10.3390/v14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.
Collapse
Affiliation(s)
- Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Grant J. Logan
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Gene Therapy Research Unit, Children′s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia;
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - Cindy Y. Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
| | - James J. H. Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Department of Cardiology, Westmead Hospital, Westmead 2145, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children′s Medical Research Institute and Sydney Children’s Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (R.R.); (M.F.); (S.I.); (C.Y.K.); (J.J.H.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
- Department of Cardiology, Westmead Hospital, Westmead 2145, Australia
- Correspondence:
| |
Collapse
|
6
|
Culture media selection and feeding strategy for high titer production of a lentiviral vector by stable producer clones cultivated at high cell density. Bioprocess Biosyst Eng 2022; 45:1267-1280. [PMID: 35758994 PMCID: PMC9363386 DOI: 10.1007/s00449-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
The growing interest in the use of lentiviral vectors (LVs) for various applications has created a strong demand for large quantities of vectors. To meet the increased demand, we developed a high cell density culture process for production of LV using stable producer clones generated from HEK293 cells, and improved volumetric LV productivity by up to fivefold, reaching a high titer of 8.2 × 107 TU/mL. However, culture media selection and feeding strategy development were not straightforward. The stable producer clone either did not grow or grow to lower cell density in majority of six commercial HEK293 media selected from four manufacturers, although its parental cell line, HEK293 cell, grows robustly in these media. In addition, the LV productivity was only improved up to 53% by increasing cell density from 1 × 106 and 3.8 × 106 cells/mL at induction in batch cultures using two identified top performance media, even these two media supported the clone growth to 5.7 × 106 and 8.1 × 106 cells/mL, respectively. A combination of media and feed from different companies was required to provide diverse nutrients and generate synergetic effect, which supported the clone growing to a higher cell density of 11 × 106 cells/mL and also increasing LV productivity by up to fivefold. This study illustrates that culture media selection and feeding strategy development for a new clone or cell line can be a complex process, due to variable nutritional requirements of a new clone. A combination of diversified culture media and feed provides a broader nutrients and could be used as one fast approach to dramatically improve process performance.
Collapse
|
7
|
Joshi PRH, Venereo-Sanchez A, Chahal PS, Kamen AA. Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnol J 2021; 16:e2000021. [PMID: 33277815 DOI: 10.1002/biot.202000021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/27/2020] [Indexed: 01/23/2023]
Abstract
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| | | | - Parminder S Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montréal, Quebec, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Holographic Imaging of Insect Cell Cultures: Online Non-Invasive Monitoring of Adeno-Associated Virus Production and Cell Concentration. Processes (Basel) 2020. [DOI: 10.3390/pr8040487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect cell-baculovirus vector system has become one of the favorite platforms for the expression of viral vectors for vaccination and gene therapy purposes. As it is a lytic system, it is essential to balance maximum recombinant product expression with harvest time, minimizing product exposure to detrimental proteases. With this purpose, new bioprocess monitoring solutions are needed to accurately estimate culture progression. Herein, we used online digital holographic microscopy (DHM) to monitor bioreactor cultures of Sf9 insect cells. Batches of baculovirus-infected Sf9 cells producing recombinant adeno-associated virus (AAV) and non-infected cells were used to evaluate DHM prediction capabilities for viable cell concentration, culture viability and AAV titer. Over 30 cell-related optical attributes were quantified using DHM, followed by a forward stepwise regression to select the most significant (p < 0.05) parameters for each variable. We then applied multiple linear regression to obtain models which were able to predict culture variables with root mean squared errors (RMSE) of 7 × 105 cells/mL, 3% for cell viability and 2 × 103 AAV/cell for 3-fold cross-validation. Overall, this work shows that DHM can be implemented for online monitoring of Sf9 concentration and viability, also permitting to monitor product titer, namely AAV, or culture progression in lytic systems, making it a valuable tool to support the time of harvest decision and for the establishment of controlled feeding strategies.
Collapse
|
9
|
Joshi PR, Cervera L, Ahmed I, Kondratov O, Zolotukhin S, Schrag J, Chahal PS, Kamen AA. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an Insect Cell-One Baculovirus System. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:279-289. [PMID: 30886878 PMCID: PMC6404649 DOI: 10.1016/j.omtm.2019.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016–1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%–30% genomic and 70%–80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.
Collapse
Affiliation(s)
- Pranav R.H. Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Laura Cervera
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Ibrahim Ahmed
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Oleksandr Kondratov
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joseph Schrag
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Parminder S. Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Amine A. Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Corresponding author: Amine Kamen, Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
10
|
Preventive, Diagnostic and Therapeutic Applications of Baculovirus Expression Vector System. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2018. [PMCID: PMC7115001 DOI: 10.1007/978-3-319-61343-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different strategies are being worked out for engineering the original baculovirus expression vector (BEV) system to produce cost-effective clinical biologics at commercial scale. To date, thousands of highly variable molecules in the form of heterologous proteins, virus-like particles, surface display proteins/antigen carriers, heterologous viral vectors and gene delivery vehicles have been produced using this system. These products are being used in vaccine production, tissue engineering, stem cell transduction, viral vector production, gene therapy, cancer treatment and development of biosensors. Recombinant proteins that are expressed and post-translationally modified using this system are also suitable for functional, crystallographic studies, microarray and drug discovery-based applications. Till now, four BEV-based commercial products (Cervarix®, Provenge®, Glybera® and Flublok®) have been approved for humans, and myriad of others are in different stages of preclinical or clinical trials. Five products (Porcilis® Pesti, BAYOVAC CSF E2®, Circumvent® PCV, Ingelvac CircoFLEX® and Porcilis® PCV) got approval for veterinary use, and many more are in the pipeline. In the present chapter, we have emphasized on both approved and other baculovirus-based products produced in insect cells or larvae that are important from clinical perspective and are being developed as preventive, diagnostic or therapeutic agents. Further, the potential of recombinant adeno-associated virus (rAAV) as gene delivery vector has been described. This system, due to its relatively extended gene expression, lack of pathogenicity and the ability to transduce a wide variety of cells, gained extensive popularity just after the approval of first AAV-based gene therapy drug alipogene tiparvovec (Glybera®). Numerous products based on AAV which are presently in different clinical trials have also been highlighted.
Collapse
|
11
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Cheng LF, Wang F, Zhang L, Yu L, Ye W, Liu ZY, Ying QK, Wu XA, Xu ZK, Zhang FL. Incorporation of GM-CSF or CD40L Enhances the Immunogenicity of Hantaan Virus-Like Particles. Front Cell Infect Microbiol 2016; 6:185. [PMID: 28066721 PMCID: PMC5167722 DOI: 10.3389/fcimb.2016.00185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
A safe and effective Hantaan virus (HTNV) vaccine is highly desirable because HTNV causes an acute and often fatal disease (hemorrhagic fever with renal syndrome, HFRS). Since the immunity of the inactivated vaccine is weak and the safety is poor, HTNV virus-like particles (VLPs) offer an attractive and safe alternative. These particles lack the viral genome but are perceived by the immune system as virus particles. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this enhancement, we generated chimeric HTNV VLPs containing glycosylphosphatidylinositol (GPI)-anchored granulocyte macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity in vitro. The immunization of mice with chimeric HTNV VLPs containing GM-CSF or CD40L induced stronger humoral immune responses and cellular immune responses compared to the HTNV VLPs and Chinese commercial inactivated hantavirus vaccine. Chimeric HTNV VLPs containing GM-CSF or CD40L also protected mice from an HTNV challenge. Altogether, our results suggest that anchoring immunostimulatory molecules into HTNV VLPs can be a potential approach for the control and prevention of HFRS.
Collapse
Affiliation(s)
- Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Fang Wang
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Liang Zhang
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Lan Yu
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Wei Ye
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Zi-Yu Liu
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Qi-Kang Ying
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Xing-An Wu
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Zhi-Kai Xu
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical University Xi'an, China
| |
Collapse
|
13
|
Monteiro F, Bernal V, Chaillet M, Berger I, Alves PM. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. J Biotechnol 2016; 233:34-41. [DOI: 10.1016/j.jbiotec.2016.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
|
14
|
Fundamentals of Baculovirus Expression and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:187-97. [DOI: 10.1007/978-3-319-27216-0_12] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Recombinant Protein Production in Large-Scale Agitated Bioreactors Using the Baculovirus Expression Vector System. Methods Mol Biol 2016; 1350:241-61. [PMID: 26820861 DOI: 10.1007/978-1-4939-3043-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The production of recombinant proteins using the baculovirus expression vector system (BEVS) in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with advanced on-line monitoring and bioreactor control, which have a significant impact on the overall process success, are briefly discussed.
Collapse
|
16
|
Abstract
The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as vaccine candidates, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics. The use of host insect cells allows mass production of VLPs in a proven scalable system.
Collapse
Affiliation(s)
- Christine M Thompson
- Department of Chemical Engineering, Ecole Polytechnique de Montreal, 2500, Chemin de Polytechnique, Montreal, QC, Canada
- National Research Council Canada, Montreal, QC, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada, N2L 3G1.
| | - Amine A Kamen
- National Research Council Canada, Montreal, QC, Canada
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Abstract
Baculovirus-based Insect Cell Technology (ICT) is widely used for the expression of recombinant heterologous proteins and baculovirus bioinsecticides, and has recently gained momentum as a commercial manufacturing platform for human and veterinary vaccines. The three key components of ICT are the Lepidopteran insect cell line, the baculovirus vector, and the growth medium. Insect cell growth media have evolved significantly in the past five decades, from basal media supplemented with hemolymph or animal serum, to highly optimized serum-free media and feeds (SFM and SFF) capable of supporting very high cell densities and recombinant protein yields. The substitution of animal sera with protein hydrolysates in SFM results in greatly reduced medium costs and much improved process scalability. However, both sera and hydrolysates share the disadvantage of lot-to-lot variability, which is detrimental to process reproducibility. Hence, the industrialization of ICT would benefit greatly from chemically defined media (CDM) for insect cells, which are not yet commercially available. On the other hand, applications such as baculovirus bioinsecticides would need truly low cost serum-free media and feeds (LC-SFM and LC-SFF) for economic viability, which require the substitution of a majority of expensive added amino acids with even higher levels of hydrolysates, hence increasing the risk of a variable process. CDM developments are anticipated to benefit both conventional and low cost ICT applications, by identifying key growth factors in hydrolysates for more targeted media and feed design.
Collapse
Affiliation(s)
| | - Steven Reid
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Felberbaum RS. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 2015; 10:702-14. [PMID: 25800821 PMCID: PMC7159335 DOI: 10.1002/biot.201400438] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.
Collapse
|
19
|
Grosios K, Petry H, Lubelski J. Adeno-Associated Virus Gene Therapy and Its Application to the Prevention and Personalised Treatment of Rare Diseases. Rare Dis 2015. [DOI: 10.1007/978-94-017-9214-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
21
|
Xu Z, Shi C, Qian Q. Scalable manufacturing methodologies for improving adeno-associated virus-based pharmaprojects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Chahal PS, Schulze E, Tran R, Montes J, Kamen AA. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 2013; 196:163-73. [PMID: 24239634 PMCID: PMC7113661 DOI: 10.1016/j.jviromet.2013.10.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/29/2023]
Abstract
Transient transfection of HEK293 suspension cells efficiently produce AAV vectors. Nine different AAV serotypes were produced with yields of 1E+13 Vg/L. AAV2 and AAV6 produced in 3-L bioreactors gave yields comparable to shake-flasks. The process is cGMP compatible using serum-free media and HEK293 master cell bank. Industrialization of the process is possible for manufacturing AAV serotypes.
Adeno-associated virus (AAV) is being used successfully in gene therapy. Different serotypes of AAV target specific organs and tissues with high efficiency. There exists an increasing demand to manufacture various AAV serotypes in large quantities for pre-clinical and clinical trials. A generic and scalable method has been described in this study to efficiently produce AAV serotypes (AAV1-9) by transfection of a fully characterized cGMP HEK293SF cell line grown in suspension and serum-free medium. First, the production parameters were evaluated using AAV2 as a model serotype. Second, all nine AAV serotypes were produced successfully with yields of 1013 Vg/L cell culture. Subsequently, AAV2 and AAV6 serotypes were produced in 3-L controlled bioreactors where productions yielded up to 1013 Vg/L similar to the yields obtained in shake-flasks. For example, for AAV2 1013 Vg/L cell culture (6.8 × 1011 IVP/L) were measured between 48 and 64 h post transfection (hpt). During this period, the average cell specific AAV2 yields of 6800 Vg per cell and 460 IVP per cell were obtained with a Vg to IVP ratio of less than 20. Successful operations in bioreactors demonstrated the potential for scale-up and industrialization of this generic process for manufacturing AAV serotypes efficiently.
Collapse
Affiliation(s)
- Parminder Singh Chahal
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Erica Schulze
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Rosa Tran
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Amine A Kamen
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2.
| |
Collapse
|
24
|
Matindoost L, Chan LC, Qi YM, Nielsen LK, Reid S. Suspension culture titration: A simple method for measuring baculovirus titers. J Virol Methods 2012; 183:201-9. [DOI: 10.1016/j.jviromet.2012.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 12/11/2022]
|
25
|
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JMS, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766-81. [PMID: 22297133 PMCID: PMC7132753 DOI: 10.1016/j.biotechadv.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Abstract
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.
Collapse
Affiliation(s)
- Stanislav Sokolenko
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
26
|
Galibert L, Merten OW. Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases. J Invertebr Pathol 2011; 107 Suppl:S80-93. [PMID: 21784234 DOI: 10.1016/j.jip.2011.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/09/2011] [Indexed: 12/20/2022]
Abstract
Adeno-associated viral (AAV) vectors are gene vectors of choice for the development of gene therapy treatments for many rare diseases affecting various tissues including retina, central nervous system, liver, and muscle. The AAV based gene therapy approach became conceivable only after the development of easily scalable production systems including the Sf9 cell/baculovirus expression system. Since the establishment of the production of AAV in the Sf9/baculovirus system by the group of Rob Kotin, this new production system has largely been developed for optimizing the large scale production of different serotypes of AAV for preclinical and clinical purposes. Today this manufacturing system allows for the production of purified vector genome (vg) quantities of up to 2 × 10(15) for AAV1 using a 50L reactor and the scale up to larger reactor volumes is paralleled by a corresponding increase in the vector yield. This review presents the principles and achievements of the Sf9/baculovirus system for the production of AAV in comparison to other expression systems based on mammalian cells. In addition, new developments and improvements, which have not yet been implemented at a large scale, and perspectives for further optimization of this production system will be discussed. All of these achievements as well as further process intensifications are urgently needed for the production of clinical doses for the treatment of neuromuscular diseases for which estimated doses of up to 10(14)vg/kg body mass are required.
Collapse
Affiliation(s)
- Lionel Galibert
- Généthon, Laboratory for Applied Vectorology and Innovation, 1 rue de l'Internationale, BP60, F-91002 Evry Cedex 2, France
| | | |
Collapse
|