1
|
Wang LJ, Wu Y, Xie S, Lian H. Insulin like growth factor 2 mRNA binding protein 2 regulates vascular development in cerebral arteriovenous malformations. Front Neurol 2024; 15:1483016. [PMID: 39722688 PMCID: PMC11668662 DOI: 10.3389/fneur.2024.1483016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Cerebral arteriovenous malformations (AVMs) are intricate vascular anomalies that disrupt normal cerebral blood flow, potentially leading to severe neurological complications. Although the pathology of AVMs is not fully understood, epigenetic mechanisms have been implicated in their formation. Methods Transcriptional differences between cerebral AVMs and normal tissues were analyzed using RNA sequencing (RNA-seq), identifying IGF2BP2 as a key differentially expressed gene. Comprehensive bioinformatics analysis, integrating multi-omics data such as RNA-seq and methylated RNA immunoprecipitation sequencing (MeRIP-seq), was employed to identify the downstream target gene of IGF2BP2. The roles of specific genes in vascular development were assessed using endothelial cell cultures and zebrafish models. Results Our analysis of RNA-seq data from cerebral AVMs and normal tissues identified IGF2BP2, a key N6-methyladenosine (m6A) reader, as significantly downregulated in cerebral AVMs. Functional studies showed that IGF2BP2 knockdown resulted in abnormal angiogenesis in endothelial cells and disrupted vascular development in zebrafish models. Mechanistically, IGF2BP2 regulates LGALS8 expression by modulating mRNA stability through m6A modification, and LGALS8 deficiency severely impairs angiogenesis in vitro and leads to cerebrovascular dysplasia in vivo. Conclusion Our findings suggest that IGF2BP2, via m6A-dependent regulation of LGALS8, is crucial for vascular development and presents potential targets for therapeutic intervention in cerebral AVMs.
Collapse
Affiliation(s)
- Lin-jian Wang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Yangyang Wu
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Sha Xie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongkai Lian
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| |
Collapse
|
2
|
Mahaki H, Ravari H, Kazemzadeh G, Lotfian E, Daddost RA, Avan A, Manoochehri H, Sheykhhasan M, Mahmoudian RA, Tanzadehpanah H. Pro-inflammatory responses after peptide-based cancer immunotherapy. Heliyon 2024; 10:e32249. [PMID: 38912474 PMCID: PMC11190603 DOI: 10.1016/j.heliyon.2024.e32249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Therapeutic vaccinations are designed to prevent cancer by inducing immune responses against tumor antigens. in cancer cells, tumor-associated antigens (TAA) or tumor-specific (mutated) derived peptides are presented within the clefts of main histocompatibility complex (MHC) class I or class II molecules, they either activate cytotoxic T-lymphocytes (CTLs), CD4+ T or CD8+ T lymphocytes, which release cytokines that can suppress tumor cells growth. In cancer immunotherapies, CD8+ T lymphocytes are a major mediator of tumor repression. The effect of peptide-based vaccinations on cytokines in the activating CD8+ T cell against targeted tumor antigens is the subject of this review. It is believed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12, secreting CTL line by interacting with dendritic cell (DC), supposed to stimulate immune system. Additionally, mechanisms of CTL activation and dysfunction were also studied. According to most of the data resulted from in vivo and in vitro research works, it is assumed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Ravari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamhossein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Lotfian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Jalili Shahri J, Saeed Modaghegh MH, Tanzadehpanah H, Ebrahimnejad M, Mahaki H. TH1/TH2 Cytokine Profile and Their Relationship with Hematological Parameters in Patients with Acute Limb Ischemia. Rep Biochem Mol Biol 2024; 13:31-39. [PMID: 39582827 PMCID: PMC11580126 DOI: 10.61186/rbmb.13.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/01/2024] [Indexed: 11/26/2024]
Abstract
Background The progression of acute limb ischemia (ALI) is being significantly influenced by changes in immune system function. The study aimed to determine the dominant immune cell responses (Th1 or Th2) in ALI patients by measuring serum levels of IL-4, IL-12, and IFN-γ. Previous studies indicate altered cytokine levels in cerebral ischemia, but there is no prior research on these cytokines in ALI patients. Methods This study involved 34 patients with ALI and 34 healthy controls. Blood samples were analyzed for hematological factors such as erythrocyte sedimentation rate (ESR), white blood cell (WBC) count, red blood cell (RBC) count, platelet (Plt) count, hemoglobin (Hb), and hematocrit (HCT). The levels of serum cytokines IL-4, IL-12, and IFN-γ were measured in both patients and control subjects using enzyme-linked immunosorbent assay (ELISA). The statistical analyses were conducted using SPSS and GraphPad Prism. Results The results showed that serum levels of IL-4 in ALI patients did not significantly differ from those in control groups. Acute limb ischemia exhibited significantly elevated levels of IL-12 and IFN-γ compared to healthy individuals. In addition, no correlation between the production of cytokines and the hematological parameters was found. Conclusions Th1 responses are believed to play a role in the pathogenesis of ALI, but further research is needed to fully understand their exact role.
Collapse
Affiliation(s)
- Jamal Jalili Shahri
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shabani Z, Schuerger J, Zhu X, Tang C, Ma L, Yadav A, Liang R, Press K, Weinsheimer S, Schmidt A, Wang C, Sekhar A, Nelson J, Kim H, Su H. Increased Collagen I/Collagen III Ratio Is Associated with Hemorrhage in Brain Arteriovenous Malformations in Human and Mouse. Cells 2024; 13:92. [PMID: 38201296 PMCID: PMC10778117 DOI: 10.3390/cells13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background: The increase in the collagen I (COL I)/COL III ratio enhances vessel wall stiffness and renders vessels less resistant to blood flow and pressure changes. Activated microglia enhance inflammation-induced fibrosis. Hypotheses: The COL I/COL III ratio in human and mouse brain arteriovenous malformations (bAVMs) is associated with bAVM hemorrhage, and the depletion of microglia decreases the COL I/COL III ratio and hemorrhage. Method: COL I, COL III, and hemorrhages were analyzed in 12 human bAVMs and 6 control brains, and mouse bAVMs induced in three mouse lines with activin receptor-like kinase 1 (n = 7) or endoglin (n = 7) deleted in the endothelial cells or brain focally (n = 5). The controls for the mouse study were no-gene-deleted litter mates. Mouse bAVMs were used to test the relationships between the Col I/Col III ratio and hemorrhage and whether the transient depletion of microglia reduces the Col I/Col III ratio and hemorrhage. Results: The COL I/COL III ratio was higher in the human and mouse bAVMs than in controls. The microhemorrhage in mouse bAVMs was positively correlated with the Col I/Col III ratio. Transient depletion of microglia reduced the Col I/Col III ratio and microhemorrhage. Conclusions: The COL I/COL III ratio in the bAVMs was associated with bAVM hemorrhage. The depletion of microglia reduced the bAVM Col I/Col III ratio and hemorrhage.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Xiaonan Zhu
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Chaoliang Tang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Li Ma
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Rich Liang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Kelly Press
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Annika Schmidt
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Abinav Sekhar
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Jeffrey Nelson
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Helen Kim
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA; (Z.S.); (J.S.); (X.Z.); (C.T.); (L.M.); (A.Y.); (R.L.); (K.P.); (S.W.); (A.S.); (C.W.); (A.S.); (J.N.); (H.K.)
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|