1
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
2
|
Kilian M, Bunse T, Wick W, Platten M, Bunse L. Genetically Modified Cellular Therapies for Malignant Gliomas. Int J Mol Sci 2021; 22:12810. [PMID: 34884607 PMCID: PMC8657496 DOI: 10.3390/ijms222312810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, 69120 Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Michael Platten
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Helmholtz-Institute of Translational Oncology (HI-TRON), 55131 Mainz, Germany
| | - Lukas Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Yoo HJ, Harapan BN. Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunol Res 2021; 69:471-486. [PMID: 34554405 PMCID: PMC8580929 DOI: 10.1007/s12026-021-09236-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
With recent advances, chimeric antigen receptor (CAR) immunotherapy has become a promising modality for patients with refractory cancer diseases. The successful results of CAR T cell therapy in relapsed and refractory B-cell malignancies shifted the paradigm of cancer immunotherapy by awakening the scientific, clinical, and commercial interest in translating this technology for the treatment of solid cancers. This review elaborates on fundamental principles of CAR T cell therapy (development of CAR construct, challenges of CAR T cell therapy) and its application on solid tumors as well as CAR T cell therapy potential in the field of neuro-oncology. Glioblastoma (GBM) is identified as one of the most challenging solid tumors with a permissive immunological milieu and dismal prognosis. Standard multimodal treatment using maximal safe resection, radiochemotherapy, and maintenance chemotherapy extends the overall survival beyond a year. Recurrence is, however, inevitable. GBM holds several unique features including its vast intratumoral heterogeneity, immunosuppressive environment, and a partially permissive anatomic blood–brain barrier, which offers a unique opportunity to investigate new treatment approaches. Tremendous efforts have been made in recent years to investigate novel CAR targets and target combinations with standard modalities for solid tumors and GBM to improve treatment efficacy. In this review, we outline the history of CAR immunotherapy development, relevant CAR target antigens validated with CAR T cells as well as preclinical approaches in combination with adjunct approaches via checkpoint inhibition, bispecific antibodies, and second-line systemic therapies that enhance anticancer efficacy of the CAR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hyeon Joo Yoo
- Department of Internal Medicine V, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Biyan Nathanael Harapan
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University of Munich, 81377, Munich, Germany.
| |
Collapse
|
4
|
Liu X, Zhang N, Shi H. Driving better and safer HER2-specific CARs for cancer therapy. Oncotarget 2017; 8:62730-62741. [PMID: 28977984 PMCID: PMC5617544 DOI: 10.18632/oncotarget.17528] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Given the clinical efficacy of chimeric antigen receptor (CAR)-based therapy in hematological malignancies, CAR T-cell therapy for a number of solid tumors has been actively investigated. Human epidermal growth factor receptor 2 (HER2) is a well-established therapeutic target in breast, as well as other types of cancer. However, HER2 CAR T cells pose a risk of lethal toxicity including cytokine release syndrome from “on-target, off-tumor” recognition of HER2. In this review, we summarize the development of conventional HER2 CAR technology, the alternative selection of CAR hosts, the novel HER2 CAR designs, clinical studies and toxicity. Furthermore, we also discuss the main strategies for improving the safety of HER2 CAR-based cancer therapies.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Huan Shi
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
5
|
Thomas S, Straathof K, Himoudi N, Anderson J, Pule M. An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers. PLoS One 2016; 11:e0152196. [PMID: 27030986 PMCID: PMC4816271 DOI: 10.1371/journal.pone.0152196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma is the commonest extra cranial solid cancer of childhood. Despite escalation of treatment regimens, a significant minority of patients die of their disease. Disialoganglioside (GD2) is consistently expressed at high-levels in neuroblastoma tumors, which have been targeted with some success using therapeutic monoclonal antibodies. GD2 is also expressed in a range of other cancer but with the exception of some peripheral nerves is largely absent from non-transformed tissues. Chimeric Antigen Receptors (CARs) are artificial type I proteins which graft the specificity of a monoclonal antibody onto a T-cell. Clinical data with early CAR designs directed against GD2 have shown some promise in Neuroblastoma. Here, we describe a GD2-targeting CAR retroviral cassette, which has been optimized for CAR T-cell persistence, efficacy and safety.
Collapse
Affiliation(s)
- Simon Thomas
- Cancer Institute, University College London, London, United Kingdom
| | - Karin Straathof
- Institute of Child Health, University College London, London, United Kingdom
| | - Nourredine Himoudi
- Institute of Child Health, University College London, London, United Kingdom
| | - John Anderson
- Institute of Child Health, University College London, London, United Kingdom
| | - Martin Pule
- Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
6
|
Shi H, Sun M, Liu L, Wang Z. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Mol Cancer 2014; 13:219. [PMID: 25241075 PMCID: PMC4177696 DOI: 10.1186/1476-4598-13-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptors (CARs) are recombinant receptors that combine the specificity of an antigen-specific antibody with the T-cell’s activating functions. Initial clinical trials of genetically engineered CAR T cells have significantly raised the profile of T cell therapy, and great efforts have been made to improve this approach. In this review, we provide a structural overview of the development of CAR technology and highlight areas that require further refinement. We also discuss critical issues related to CAR therapy, including the optimization of CAR T cells, the route of administration, CAR toxicity and the blocking of inhibitory molecules.
Collapse
Affiliation(s)
| | | | - Lin Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, No, 440 Jiyan Road, Jinan, Shandong 250117, P,R, China.
| | | |
Collapse
|
7
|
HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Abstract
Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR(+) T cell therapy.
Collapse
|
9
|
Satta A, Mezzanzanica D, Turatti F, Canevari S, Figini M. Redirection of T-cell effector functions for cancer therapy: bispecific antibodies and chimeric antigen receptors. Future Oncol 2013; 9:527-39. [DOI: 10.2217/fon.12.203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T cells are the most potent cells of the immune system; however, they fail in the immunosurveillance of tumors. In previous decades, scientists began studying methods to take advantage of T-cell potency in cancer therapy by redirecting them against tumors independently from the T-cell receptor-defined specificity. Among different approaches, the most promising are the use of bispecific antibodies and T-cell engineering to create chimeric antigen receptors. Bispecific antibodies, by simultaneously recognizing target antigen and an activating receptor on the surface of an immune effector cell, offer an opportunity to redirect immune effector cells to kill cancer cells. The other approach is the generation of chimeric antigen receptors by fusing extracellular antibodies to intracellular signaling domains. Chimeric antigen receptor-engineered T cells are able to specifically kill tumor cells in a MHC-independent way. The efficacy of these reagents in different formats has been clinically validated and will be presented here.
Collapse
Affiliation(s)
- Alessandro Satta
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Fabio Turatti
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Silvana Canevari
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Mariangela Figini
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
10
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
11
|
Lanitis E, Dangaj D, Hagemann IS, Song DG, Best A, Sandaltzopoulos R, Coukos G, Powell DJ. Primary human ovarian epithelial cancer cells broadly express HER2 at immunologically-detectable levels. PLoS One 2012; 7:e49829. [PMID: 23189165 PMCID: PMC3506636 DOI: 10.1371/journal.pone.0049829] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
The breadth of HER2 expression by primary human ovarian cancers remains controversial, which questions its suitability as a universal antigen in this malignancy. To address these issues, we performed extensive HER2 expression analysis on a wide panel of primary tumors as well as established and short-term human ovarian cancer cell lines. Conventional immunohistochemical (IHC) analysis of multiple tumor sites in 50 cases of high-grade ovarian serous carcinomas revealed HER2 overexpression in 29% of evaluated sites. However, more sensitive detection methods including flow cytometry, western blot analysis and q-PCR revealed HER2 expression in all fresh tumor cells derived from primary ascites or solid tumors as well as all established and short-term cultured cancer cell lines. Cancer cells generally expressed HER2 at higher levels than that found in normal ovarian surface epithelial (OSE) cells. Accordingly, genetically-engineered human T cells expressing an HER2-specific chimeric antigen receptor (CAR) recognized and reacted against all established or primary ovarian cancer cells tested with minimal or no reactivity against normal OSE cells. In conclusion, all human ovarian cancers express immunologically-detectable levels of HER2, indicating that IHC measurement underestimates the true frequency of HER2-expressing ovarian cancers and may limit patient access to otherwise clinically meaningful HER2-targeted therapies.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Denarda Dangaj
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ian S. Hagemann
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Best
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Coukos
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel J. Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Kebriaei P, Kelly SS, Manuri P, Jena B, Jackson R, Shpall E, Champlin R, Cooper LJN. Chimeric antibody receptors (CARs): driving T-cell specificity to enhance anti-tumor immunity. Front Biosci (Schol Ed) 2012; 4:520-31. [PMID: 22202074 DOI: 10.2741/282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lanitis E, Poussin M, Hagemann IS, Coukos G, Sandaltzopoulos R, Scholler N, Powell DJ. Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 2011; 20:633-43. [PMID: 22127019 DOI: 10.1038/mt.2011.256] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer regression by gene-modified T cells bearing a chimeric antigen receptor (CAR) exodomain of mouse origin can be limited by the induction of transgene immunogenicity resulting in poor persistence and function in vivo. The development of functionally-active CAR of human origin can address this issue. Here, we constructed and evaluated fully human anti-mesothelin CARs comprised of a human mesothelin-specific single-chain antibody variable fragment (P4 scFv) coupled to T cell signaling domains. Primary human T cells expressing P4 CAR specifically produced proinflammatory cytokines, degranulated and exerted potent cytolytic functions when cultured with mesothelin-expressing tumors in vitro. P4 CAR T cells also mediated bystander killing of mesothelin-negative cancer cells during coculture. CAR reactivity was not abrogated by soluble tumor-secreted or recombinant mesothelin protein even at supraphysiological levels. Importantly, adoptive transfer of P4 CAR-expressing T cells mediated the regression of large, established tumor in the presence of soluble mesothelin in a xenogenic model of human ovarian cancer. Thus, primary human T cells expressing fully human anti-mesothelin CAR efficiently kill mesothelin-expressing tumors in vitro and in vivo and have the potential to overcome the issue of transgene immunogenicity that may limit CAR T cell trials that utilize scFvs of mouse origin.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Davies DM, Maher J. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:165-78. [PMID: 20373147 DOI: 10.1007/s00005-010-0074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/27/2009] [Indexed: 12/25/2022]
Abstract
Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.
Collapse
Affiliation(s)
- David Marc Davies
- King's College London School of Medicine, Research Oncology Section, Division of Cancer Studies, Third Floor Bermondsey Wing, Guy's Hospital Campus, St Thomas Street, London SE1 9RT, UK
| | | |
Collapse
|
15
|
Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 2010; 116:1035-44. [PMID: 20439624 DOI: 10.1182/blood-2010-01-043737] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infusions of antigen-specific T cells have yielded therapeutic responses in patients with pathogens and tumors. To broaden the clinical application of adoptive immunotherapy against malignancies, investigators have developed robust systems for the genetic modification and characterization of T cells expressing introduced chimeric antigen receptors (CARs) to redirect specificity. Human trials are under way in patients with aggressive malignancies to test the hypothesis that manipulating the recipient and reprogramming T cells before adoptive transfer may improve their therapeutic effect. These examples of personalized medicine infuse T cells designed to meet patients' needs by redirecting their specificity to target molecular determinants on the underlying malignancy. The generation of clinical grade CAR(+) T cells is an example of bench-to-bedside translational science that has been accomplished using investigator-initiated trials operating largely without industry support. The next-generation trials will deliver designer T cells with improved homing, CAR-mediated signaling, and replicative potential, as investigators move from the bedside to the bench and back again.
Collapse
|
16
|
Berry LJ, Moeller M, Darcy PK. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells. ACTA ACUST UNITED AC 2009; 74:277-89. [PMID: 19775368 DOI: 10.1111/j.1399-0039.2009.01336.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adoptive cellular immunotherapy involving transfer of tumor-reactive T cells has shown some notable antitumor responses in a minority of cancer patients. In particular, transfer of tumor-infiltrating lymphocytes has resulted in long-term objective responses in patients with advanced melanoma. However, the inability to isolate sufficient numbers of tumor-specific T cells from most malignancies has restricted the broad utility of this approach. An emerging approach to circumvent this limitation involves the genetic modification of effector cells with T cell receptor (TCR) transgenes or chimeric single-chain variable fragment (scFv) receptors that can specifically redirect T cells to tumor. There has been much progress in the design of TCR and scFv receptors to enhance the antigen-specific activation of effector cells and their trafficking and persistence in vivo. Considerable effort has been directed toward improving the safety of this approach and reducing the immunogenicity of the receptor. This review discusses the latest developments in the field of adoptive immunotherapy using genetically modified immune cells that have been transduced with either TCR or scFv receptor transgenes and used in preclinical and clinical settings as anticancer agents.
Collapse
Affiliation(s)
- L J Berry
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Victoria, Australia
| | | | | |
Collapse
|
17
|
Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:5563-74. [PMID: 19843940 PMCID: PMC6292203 DOI: 10.4049/jimmunol.0900447] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To generate chimeric Ag receptors (CARs) for the adoptive immunotherapy of cancer patients with ErbB2-expressing tumors, a single-chain Ab derived from the humanized mAb 4D5 Herceptin (trastuzumab) was initially linked to T cell signaling domains derived from CD28 and the CD3zeta to generate a CAR against ErbB2. Human PBLs expressing the 4D5 CAR demonstrated Ag-specific activities against ErbB2(+) tumors. However, a gradual loss of transgene expression was noted for PBLs transduced with this 4D5 CAR. When the CD3zeta signaling domain of the CAR was truncated or mutated, loss of CAR expression was not observed, suggesting that the CD3zeta signaling caused the transgene decrease, which was supported by the finding that T cells expressing 4D5 CARs with CD3zeta ITAM mutations were less prone to apoptosis. By adding 4-1BB cytoplasmic domains to the CD28-CD3zeta signaling moieties, we found increased transgene persistence in 4D5 CAR-transduced PBLs. Furthermore, constructs with 4-1BB sequences demonstrated increased cytokine secretion and lytic activity in 4D5 CAR-transduced T cells. More importantly, PBLs expressing this new version of the 4D5 CAR could not only efficiently lyse the autologous fresh tumor digests, but they could strongly suppress tumor growth in a xenogenic mouse model.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/therapeutic use
- Cell Line
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Coculture Techniques
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, SCID
- Protein Structure, Tertiary/genetics
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/therapeutic use
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Transduction, Genetic
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yangbing Zhao
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiong J. Wang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shicheng Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James N. Kochenderfer
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiaosong Zhong
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michel Sadelain
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Sebestyen Z, de Vrij J, Magnusson M, Debets R, Willemsen R. An oncolytic adenovirus redirected with a tumor-specific T-cell receptor. Cancer Res 2008; 67:11309-16. [PMID: 18056457 DOI: 10.1158/0008-5472.can-07-0739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve safety and specificity of oncolytic adenoviruses, we introduced T-cell receptors (TCR) specific for a unique class of truly tumor-specific antigens into the adenoviral fiber protein. The adenoviral fiber knob responsible for attachment to the coxsackie-adenoviral receptor (CAR) on target cells was replaced by a single-chain TCR (scTCR) molecule with specificity for the melanoma-associated cancer-testis antigen MAGE-A1, presented by HLA-A1, and an extrinsic trimerization motif in a replicating Ad5 vector (Ad5.R1-scTCR). The production of the recombinant virus was initiated in a novel producer cell line that expressed an antibody-based hexon-specific receptor (293T-AdR) in the cell membrane. This new production system allowed CAR-independent and target antigen-independent propagation of Ad5.R1-scTCR. Infection with adenovirus bearing the scTCR-based fiber resulted in an efficient killing of target tumor cells. The infection was cell type specific because only HLA-A1(+)/MAGE-A1(+) melanoma cells were killed, and thus, this retargeting strategy provides a versatile tool for future clinical application.
Collapse
Affiliation(s)
- Zsolt Sebestyen
- Tumor Immunology Group, Unit of Clinical and Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
19
|
Turatti F, Figini M, Balladore E, Alberti P, Casalini P, Marks JD, Canevari S, Mezzanzanica D. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother 2007; 30:684-93. [PMID: 17893561 DOI: 10.1097/cji.0b013e3180de5d90] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Novel Ab-based immunotherapeutic strategies have exploited T-cell receptor-like chimeric immune receptors (CIR) expressed on the surface of transduced human peripheral blood mononuclear cell (PBMC) to redirect potent non-major histocompatibility complex-dependent cytotoxicity to tumor cells expressing a tumor-associated antigens. We transduced human PBMC with 2 fully human CIRs that trigger through the zeta-chain of CD3 and contain either one of two human scFv specific for the same epitope on the extracellular domain of HER2 but with distinctly different affinities (KD 1616 and 1 nM) for this antigen. Potent direct CIR-mediated killing and in vitro tumor growth inhibition mediated by transduced PBMC were observed against targets expressing different levels of HER2. High-affinity CIR showed stronger ability to bind Ag and retain binding than low-affinity CIR. When lytic potential of the 2 CIRs was evaluated, their efficiency was comparable under conditions of high CIR and Ag expression, whereas low-affinity CIR was more efficient than high-affinity CIR in conditions of limiting Ag and CIR expression levels. When tumor growth inhibition was evaluated, Ag and CIR levels, rather than CIR affinity appeared relevant. Ag-driven CIR activation resulted in the production of soluble factors mediating efficient bystander effect. By carefully defining CIR surface expression and increasing affinity for a specific target antigen, it may be possible to selectively exclude CIR-mediated activity against targets expressing low levels of antigen, as normal cells. On the contrary, low antigen-expressing tumor variants could be eliminated by decreasing CIR affinity. Tuning CIR expression and affinity might help in discriminating different biologic contexts.
Collapse
MESH Headings
- Antibody Affinity
- Antigens, Neoplasm/immunology
- Cell Line
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Humans
- Immunoglobulin Variable Region/immunology
- Leukocytes, Mononuclear/immunology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Fabio Turatti
- Molecular Therapies Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|