1
|
Gou Z, Yan X, Jia H, Sun K, Li P, Zhang Q, Deng X. Modulation of SERCA2a expression and function by ultrasound-guided myocardial gene transfection. Exp Ther Med 2020; 20:132. [PMID: 33082864 PMCID: PMC7557332 DOI: 10.3892/etm.2020.9261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca²+-ATPase (SERCA2a) is important for cardiac physiological function and pathological progression. However, intravenous injection, a commonly applied approach for gene delivery in most studies investigating the expression of SERCA2a in cardiomyocytes, has not been particularly satisfactory. Therefore, in the present study, a modified method was used to transfect this gene into the heart. Specifically, a SERCA2a-knockdown lentivirus was directly injected into the myocardium of adult rats under ultrasound guidance, following which the effectiveness and feasibility of this proposed approach were evaluated. The results demonstrated that compared with traditional intravenous injection, the modified gene delivery method resulted in markedly higher transfection efficiency. In addition, the SERCA2a-knockdown rats exhibited higher rates of arrhythmia and weaker ventricular wall motions compared with those in the control rats, with these symptoms more evident in the rats that received a direct injection into the myocardium compared with those that were intravenously injected. These results suggest that ultrasound-guided injection into the myocardium is an efficient and safe method for gene delivery and for inducing the knockdown of SERCA2a protein expression in cardiomyocytes in their native environment.
Collapse
Affiliation(s)
- Zhongshan Gou
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Hongjing Jia
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Ping Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
2
|
Comparison of Intracoronary and Intravenous Ultrasound-targeted Microbubble Destruction–mediated Ang1 Gene Transfection on Left Ventricular Remodeling in Canines With Acute Myocardial Infarction. J Cardiovasc Pharmacol 2017; 70:25-33. [DOI: 10.1097/fjc.0000000000000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Abstract
Recent advances in our understanding of the pathophysiology of myocardial dysfunction in the setting of congestive heart failure have created a new opportunity in developing nonpharmacological approaches to treatment. Gene therapy has emerged as a powerful tool in targeting the molecular mechanisms of disease by preventing the ventricular remodeling and improving bioenergetics in heart failure. Refinements in vector technology, including the creation of recombinant adeno-associated viruses, have allowed for safe and efficient gene transfer. These advancements have been coupled with evolving delivery methods that include vascular, pericardial, and direct myocardial approaches. One of the most promising targets, SERCA2a, is currently being used in clinical trials. The recent success of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease phase 2 trials using adeno-associated virus 1-SERCA2a in improving outcomes highlights the importance of gene therapy as a future tool in treating congestive heart failure.
Collapse
|
4
|
Abstract
Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Multiple components of cardiac contractility, including the Beta-adrenergic system, the calcium channel cycling pathway, and cytokine mediated cell proliferation, have been identified as appropriate targets for gene therapy. The development of efficient and safe vectors such as adeno-associated viruses and polymer nanoparticles has provided an opportunity for clinical application for gene therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) has the potential to open a new era for gene therapy in the treatment of heart failure.
Collapse
Affiliation(s)
- Charbel Naim
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
5
|
Abstract
Advances in understanding the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, make gene-based therapy a promising treatment option for heart conditions. Cardiovascular gene therapy has benefitted from recent advancements in vector technology, design, and delivery modalities. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. The recent successful and safe completion of a phase 2 trial targeting the cardiac sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA2a) has the potential to open a new era for gene therapy for heart failure.
Collapse
Affiliation(s)
- Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1030, New York, New York 10029, USA.
| |
Collapse
|
6
|
Abstract
Cardiovascular disease remains a leading cause of hospitalization and mortality worldwide. Conventional heart failure treatment is making steady and substantial progress to reduce the burden of disease. Nevertheless novel therapies and especially cardiac gene therapy have been emerging in the past and successfully made their way into first clinical trials. Gene therapy was initially a visionary treatment strategy for inherited, monogenetic diseases but has now developed to have potential for polygenic diseases as atherosclerosis, arrhythmias and heart failure. These novel therapeutic strategies require testing in clinically relevant animal models to transition from 'bench to bedside'. One of the major hurdles for effective cardiovascular gene therapy is the delivery of the viral vectors to the heart. In this review we present the currently available vector-mediated cardiac gene delivery methods in vivo considering the specific merits and deficiencies.
Collapse
|
7
|
Ishikawa K, Tilemann L, Fish K, Hajjar RJ. Gene delivery methods in cardiac gene therapy. J Gene Med 2011; 13:566-72. [DOI: 10.1002/jgm.1609] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kiyotake Ishikawa
- Cardiovascular Research Center; Mount Sinai School of Medicine; New York; NY; USA
| | - Lisa Tilemann
- Cardiovascular Research Center; Mount Sinai School of Medicine; New York; NY; USA
| | - Kenneth Fish
- Cardiovascular Research Center; Mount Sinai School of Medicine; New York; NY; USA
| | - Roger J. Hajjar
- Cardiovascular Research Center; Mount Sinai School of Medicine; New York; NY; USA
| |
Collapse
|
8
|
Swain JD, Katz MG, White JD, Thesier DM, Henderson A, Stedman HH, Bridges CR. A translatable, closed recirculation system for AAV6 vector-mediated myocardial gene delivery in the large animal. Methods Mol Biol 2011; 709:331-54. [PMID: 21194039 DOI: 10.1007/978-1-61737-982-6_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Current strategies for managing congestive heart failure are limited, validating the search for an alternative treatment modality. Gene therapy holds tremendous promise as both a practical and translatable technology platform. Its effectiveness is evidenced by the improvements in cardiac function observed in vector-mediated therapeutic transgene delivery to the murine myocardium. A large animal model validating these results is the likely segue into clinical application. However, controversy still exists regarding a suitable method of vector-mediated cardiac gene delivery that provides for efficient, global gene transfer to the large animal myocardium that is also clinically translatable and practical. Intramyocardial injection and catheter-based coronary delivery techniques are attractive alternatives with respect to their clinical applicability; yet, they are fraught with numerous challenges, including concerns regarding collateral gene expression in other organs, low efficiency of vector delivery to the myocardium, inhomogeneous expression, and untoward immune response secondary to gene delivery. Cardiopulmonary bypass (CPB) delivery with dual systemic and isolated cardiac circuitry precludes these drawbacks and has the added advantage of allowing for control of the pharmacological milieu, multiple pass recirculation through the coronary circulation, the selective addition of endothelial permeabilizing agents, and an increase in vector residence time. Collectively, these mechanics significantly improve the efficiency of global, vector-mediated cardiac gene delivery to the large animal myocardium, highlighting a potential therapeutic strategy to be extended to some heart failure patients.
Collapse
Affiliation(s)
- JaBaris D Swain
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ayuni EL, Gazdhar A, Giraud MN, Kadner A, Gugger M, Cecchini M, Caus T, Carrel TP, Schmid RA, Tevaearai HT. In vivo electroporation mediated gene delivery to the beating heart. PLoS One 2010; 5:e14467. [PMID: 21209934 PMCID: PMC3012686 DOI: 10.1371/journal.pone.0014467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.
Collapse
Affiliation(s)
- Erick L. Ayuni
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Amiq Gazdhar
- Division of General Thoracic Surgery, University Hospital of Berne, Berne, Switzerland
| | - Marie Noelle Giraud
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Alexander Kadner
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Mathias Gugger
- Department of Pathology, University of Berne, Berne, Switzerland
| | - Marco Cecchini
- Department of Urology, University Hospital of Berne, Berne, Switzerland
| | - Thierry Caus
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, University Hospital of Berne, Berne, Switzerland
- * E-mail:
| | - Hendrik T. Tevaearai
- Department of Cardiovascular Surgery, University Hospital of Berne, Berne, Switzerland
| |
Collapse
|
10
|
Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2010; 50:766-76. [PMID: 20837022 DOI: 10.1016/j.yjmcc.2010.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Existing methods of cardiac gene delivery can be classified by the site of injection, interventional approach and type of cardiac circulation at the time of transfer. General criteria to assess the efficacy of a given delivery method include: global versus regional myocardial transduction, technical complexity and the pathophysiological effects associated with its use, delivery-related collateral expression and the delivery-associated inflammatory and immune response. Direct gene delivery (intramyocardial, endocardial, epicardial) may be useful for therapeutic angiogenesis and for focal arrhythmia therapy but with gene expression which is primarily limited to regions in close proximity to the injection site. An often unappreciated limitation of these techniques is that they are frequently associated with substantial systemic vector delivery. Percutaneous infusion of vector into the coronary arteries is minimally invasive and allows for transgene delivery to the whole myocardium. Unfortunately, efficiency of intracoronary delivery is highly variable and the short residence time of vector within the coronary circulation and significant collateral organ expression limit its clinical potential. Surgical techniques, including the incorporation of cardiopulmonary bypass with isolated cardiac recirculation, represent novel delivery strategies that may potentially overcome these limitations; yet, these techniques are complex with inherent morbidity that must be thoroughly evaluated before safe translation into clinical practice. Characteristics of the optimal technique for gene delivery include low morbidity, increased myocardial transcapillary gradient, extended vector residence time in the coronary circulation and exclusion of residual vector from the systemic circulation after delivery to minimize extracardiac expression and to mitigate a cellular immune response. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
11
|
Delivery of gene and cellular therapies for heart disease. J Cardiovasc Transl Res 2010; 3:417-26. [PMID: 20559776 DOI: 10.1007/s12265-010-9190-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/22/2010] [Indexed: 12/30/2022]
Abstract
Although there has been considerable interest in the utilization of gene and cellular therapy for heart disease in recent years, there remain critical questions prior to widespread promotion of therapy, and key among these issues is the delivery method used for both gene therapy and cellular therapy. Much of the failure of gene and cellular therapy can be explained by the biological therapy itself; however, certainly there is a critical role played by the delivery technique, in particular, those that have been adapted from routine clinical use such as intravenous and intracoronary injection. Development of novel techniques to deliver gene and cellular therapy has ensued with some preclinical and even clinical success, though questions regarding safety, invasiveness, and repeatability remain. Here, we review techniques for gene and cellular therapy delivery, both existing and adapted techniques, and novel techniques that have emerged recently at promoting improved efficacy of therapy without the cost of systemic distribution. We also highlight key issues that need to be addressed to improve the chances of success of delivery techniques to enhance therapeutic benefit.
Collapse
|
12
|
Pleger ST, Boucher M, Most P, Koch WJ. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 2007; 13:401-14. [PMID: 17602988 DOI: 10.1016/j.cardfail.2007.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality in Western countries and projections reveal that HF incidence in the coming years will rise significantly because of an aging population. Pharmacologic therapy has considerably improved HF treatment during the last 2 decades, but fails to rescue failing myocardium and to increase global cardiac function. Therefore, novel therapeutic approaches to target the underlying molecular defects of ventricular dysfunction and to increase the outcome of patients in HF are needed. Failing myocardium generally exhibits distinct changes in beta-adrenergic receptor (betaAR) signaling and intracellular Ca2+-handling providing opportunities for research. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies to alter myocardial function and to target both betaAR signaling and Ca2+-cycling. In this review, we will discuss functional alterations of the betaAR system and Ca2+-handling in HF as well as corresponding therapeutic strategies. We will then focus on recent in vivo gene therapy strategies using the targeted inhibition of the betaAR kinase (betaARK1 or GRK2) and the restoration of S100A1 protein expression to support the injured heart and to reverse or prevent HF.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Cardiomyopathy, Hypertrophic/physiopathology
- Cardiomyopathy, Hypertrophic/therapy
- Disease Models, Animal
- G-Protein-Coupled Receptor Kinase 1/blood
- G-Protein-Coupled Receptor Kinase 1/physiology
- G-Protein-Coupled Receptor Kinase 2
- GTP-Binding Protein alpha Subunits/metabolism
- Genetic Therapy
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Myocardial Contraction/physiology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- S100 Proteins/metabolism
- beta-Adrenergic Receptor Kinases/metabolism
- beta-Adrenergic Receptor Kinases/physiology
Collapse
Affiliation(s)
- Sven T Pleger
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|