1
|
Zhang H, De Smedt SC, Remaut K. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA complexes. Acta Biomater 2018; 75:358-370. [PMID: 29753914 DOI: 10.1016/j.actbio.2018.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. STATEMENT OF SIGNIFICANCE The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, …), but should release the mRNA again in the intracellular environment. In this paper, we evaluated a method (Fluorescence Correlation Spectroscopy) that allows for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production.
Collapse
|
2
|
N-3 vs. n-6 fatty acids differentially influence calcium signalling and adhesion of inflammatory activated monocytes: impact of lipid rafts. Inflamm Res 2016; 65:881-894. [DOI: 10.1007/s00011-016-0971-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
|
3
|
Hu J, Al-Waili D, Hassan A, Fan GC, Xin M, Hao J. Inhibition of cerebral vascular inflammation by brain endothelium-targeted oligodeoxynucleotide complex. Neuroscience 2016; 329:30-42. [PMID: 27132231 DOI: 10.1016/j.neuroscience.2016.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
The present study generated a novel DNA complex to specifically target endothelial NF-κB to inhibit cerebral vascular inflammation. This DNA complex (GS24-NFκB) contains a DNA decoy which inhibits NF-κB activity, and a DNA aptamer (GS-24), a ligand of transferrin receptor (TfR), which allows for targeted delivery of the DNA decoy into cells. The results indicate that GS24-NFκB was successfully delivered into a murine brain-derived endothelial cell line, bEND5, and inhibited inflammatory responses induced by tumor necrosis factor α (TNF-α) or oxygen-glucose deprivation/re-oxygenation (OGD/R) via down-regulation of the nuclear NF-κB subunit, p65, as well as its downstream inflammatory cytokines, inter-cellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1). The inhibitory effect of the GS24-NFκB was demonstrated by a significant reduction in TNF-α or OGD/R induced monocyte adhesion to the bEND5 cells after GS24-NFκB treatment. Intravenous (i.v.) injection of GS24-'NFκB (15mg/kg) was able to inhibit the levels of phoseph-p65 and VCAM-1 in brain endothelial cells in a mouse lipopolysaccharide (LPS)-induced inflammatory model in vivo. In conclusion, our approach using DNA nanotechnology for DNA decoy delivery could potentially be utilized for inhibition of inflammation in ischemic stroke and other neuro-inflammatory diseases affecting cerebral vasculature.
Collapse
Affiliation(s)
- Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniah Al-Waili
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Aishlin Hassan
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mei Xin
- Department of Pediatrics, University of Cincinnati & Cincinnati Children's Hospital Medical Center, USA
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
4
|
Martins AH, Hu J, Xu Z, Mu C, Alvarez P, Ford BD, El Sayed K, Eterovic VA, Ferchmin PA, Hao J. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in rodent models of brain ischemia. Neuroscience 2015; 291:250-259. [PMID: 25677097 DOI: 10.1016/j.neuroscience.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
(1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volumes (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volumes (120±65 mm3) than those in the rats of the DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cell (neuroblastoma cells) apoptosis induced by oxygen-glucose deprivation (OGD), and improved the population spikes' (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to murine brain-derived endothelial (bEND5) cells and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R.
Collapse
Affiliation(s)
- Antonio H Martins
- Department of Biochemistry, Universidad Central del Caribe. Ave. Laurel #100, Santa Juanita, Bayamon, Puerto Rico, 00956
| | - Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Zhenfeng Xu
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Chaofeng Mu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Paloma Alvarez
- Department of Biochemistry, Universidad Central del Caribe. Ave. Laurel #100, Santa Juanita, Bayamon, Puerto Rico, 00956
| | - Byron D Ford
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Khalid El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe. 1800 Bienville Drive, Monroe, LA 71201
| | - Vesna A Eterovic
- Department of Biochemistry, Universidad Central del Caribe. Ave. Laurel #100, Santa Juanita, Bayamon, Puerto Rico, 00956
| | - Pedro A Ferchmin
- Department of Biochemistry, Universidad Central del Caribe. Ave. Laurel #100, Santa Juanita, Bayamon, Puerto Rico, 00956
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
5
|
Pan J, Lyu Z, Jiang W, Wang H, Liu Q, Tan M, Yuan L, Chen H. Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14391-14398. [PMID: 25032791 DOI: 10.1021/am5036626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, a novel gene delivery strategy was proposed based on silicon nanowire arrays modified with high-molecular-weight 25 kDa branched polyethylenimine (SN-PEI). Both the plasmid DNA (pDNA) binding capacity and the in vitro gene transfection efficiency of silicon nanowire arrays (SiNWAs) were significantly enhanced after modification with high-molecular-weight bPEI. Moreover, the transfection efficiency was substantially further increased by the introduction of free pDNA/PEI complexes formed by low-molecular-weight branched PEI (bPEI, 2 kDa). Additionally, factors affecting the in vitro transfection efficiency of the novel gene delivery system were investigated in detail, and the transfection efficiency was optimized on SN-PEI with a bPEI grafting time of 3 h, an incubation time of 10 min for tethered pDNA/PEI complexes consisting of high-molecular-weight bPEI grafted onto SiNWAs, and with an N/P ratio of 80 for free pDNA/PEI complexes made of low-molecular-weight bPEI. Together, our results indicate that high-molecular-weight bPEI modified SiNWAs can serve as an efficient platform for gene delivery.
Collapse
Affiliation(s)
- Jingjing Pan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US. Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 2012; 41:4755-67. [DOI: 10.1039/c2cs35146c] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Ko YT, Bickel U, Huang J. Polyethylenimine/oligonucleotide polyplexes investigated by fluorescence resonance energy transfer and fluorescence anisotropy. Oligonucleotides 2011; 21:109-14. [PMID: 21417932 DOI: 10.1089/oli.2010.0271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To advance knowledge on polyplex structure and composition, fluorescence resonance energy transfer (FRET) and anisotropy measurements were applied to polyplexes of rhodamine-labeled polyethylenimine (PEI) and fluorescein-labeled double-stranded oligodeoxynucleotide (ODN). About 25 kDa PEI was compared with low-molecular-weight PEI of 2.7 kDa. FRET reached maxima at amine to phosphate (N/P) ratios of 2 and 3 for 2.7 kDa and 25 kDa PEI, respectively, with similar average distances between donor and acceptor dye molecules in polyplexes. Anisotropy measurements allowed estimating the bound fractions of PEI and ODN. At N/P = 6, all ODN was bound, but only 58% of PEI 25 kDa and 45% of PEI 2.7 kDa. In conclusion, the higher molecular weight of PEI may conformationally restrict the availability of amino groups for charge interaction with phosphate groups in ODN. Moreover, significant fractions of both types of PEI remain free in solution at N/P ratios frequently used for transfection. FRET and anisotropy measurements provide effective tools for probing polyplex compositions and designing optimized delivery systems.
Collapse
Affiliation(s)
- Young Tag Ko
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea.
| | | | | |
Collapse
|
8
|
Aigner A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol 2010; 2006:71659. [PMID: 17057369 PMCID: PMC1559929 DOI: 10.1155/jbb/2006/71659] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful method for specific gene
silencing which may also lead to promising novel therapeutic
strategies. It is mediated through small interfering RNAs (siRNAs)
which sequence-specifically trigger the cleavage and subsequent
degradation of their target mRNA. One critical factor is the
ability to deliver intact siRNAs into target cells/organs in vivo.
This review highlights the mechanism of RNAi and the guidelines
for the design of optimal siRNAs. It gives an overview of studies
based on the systemic or local application of naked siRNAs or the
use of various nonviral siRNA delivery systems. One promising
avenue is the the complexation of siRNAs with the polyethylenimine
(PEI), which efficiently stabilizes siRNAs and, upon systemic
administration, leads to the delivery of the intact siRNAs into
different organs. The antitumorigenic effects of
PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant
proteins like in mouse tumor xenograft models are described.
Collapse
Affiliation(s)
- Achim Aigner
- Department of Pharmacology and Toxicology,
Philipps-University Marburg, Karl-v.-Frisch-Strasse 1, 35033 Marburg, Germany
- *Achim Aigner:
| |
Collapse
|
9
|
Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh SI, Kamioka M, Uekita H, Ohkawara H, Suzuki K, Teramoto T, Maruyama Y, Takeishi Y. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+signaling pathways in endothelial cells. J Cell Physiol 2009; 220:706-15. [DOI: 10.1002/jcp.21818] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Release 2008; 133:230-7. [PMID: 19013203 DOI: 10.1016/j.jconrel.2008.10.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/06/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
Abstract
Despite high in vitro transfection efficiency, the use of the cationic polymer polyethylenimine (PEI) for systemic application is limited due to its rapid blood clearance and accumulation by RES sites upon intravenous administration of PEI/DNA polyplexes. Therefore, it is important to improve the properties of the PEI/DNA complex with respect to extending the systemic circulation time and suppression of RES uptake. In this study, we applied PEGylated liposome technology for systemic delivery of PEI polyplex of oligodeoxynucleotides (ODN), based on encapsulation of the PEI/ODN polyplexes into PEGylated liposomes. The PEI/ODN polyplex was prepared with a low-branched PEI with MW 2.7 kDa and 20-mer double stranded ODN and was then entrapped into PEGylated liposomes with 95% loading efficiency, leading to a virus-like structure with approximately 130 nm diameter. The PEG-stabilized liposome (PSL) entrapping PEI/ODN polyplexes remained stable in the presence of serum. Upon intravenous administration, the DNA in the PSL was cleared from systemic circulation at a significantly slower rate as compared to the naked PEI/ODN complex. Furthermore, targeting of the PSL with antibody specific to transferrin receptor redirected biodistribution of the entrapped ODN, leading to significant accumulation in the targeted organ, i.e. brain. Encapsulation of the PEI/ODN polyplexes within a long-circulating liposome provided a promising ODN delivery system for in vivo application.
Collapse
|
11
|
Bhattacharya R, Osburg B, Fischer D, Bickel U. Targeted delivery of complexes of biotin-PEG-polyethylenimine and NF-kappaB decoys to brain-derived endothelial cells in vitro. Pharm Res 2007; 25:605-15. [PMID: 17952570 DOI: 10.1007/s11095-007-9389-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/22/2007] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the effect of re-directing the uptake mechanism of polyplexes containing oligodeoxynucleotide (ODN) decoys to nuclear factor kappa B (NF-kappaB) from absorptive-mediated to receptor-mediated endocytosis. MATERIALS AND METHODS Complexes of ODNs and a co-polymer of biotin-polyethylenglycol and polyethylenimine (BPP) were targeted to brain-derived endothelial cells with a conjugate of antibody 8D3 and streptavidin (8D3SA). Size and stability of ODN/BPP complexes was measured by dynamic light scattering. Cellular uptake was studied by confocal microscopy. Cell viability and pharmacological effects were investigated on murine bEnd5 cells stimulated with tumor necrosis factor. RESULTS ODN/BPP complexes showed sizes of 116+/-2.3 nm, which increased by 40 nm when coupled to 8D3SA, and were stable in physiological fluids. Targeted complexes were internalized intact into endosomal compartments. Treatment conditions, which yielded significant inhibitory effects on mRNA expression of VCAM-1, ICAM-1, IkappaBalpha and iNOS by bEnd5 cells, did not affect viability. At 0.5 microM, decoy ODN significantly inhibited monocyte adhesion to bEnd5 monolayers when delivered as 8D3SA-targeted complex, while higher concentrations of untargeted complex were ineffective. CONCLUSIONS The complex of NF-kappaB decoys and BPP, which can be targeted to transferrin receptors, is a promising drug candidate for neuroinflammatory diseases affecting the blood-brain barrier.
Collapse
Affiliation(s)
- Raktima Bhattacharya
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, 1300 Coulter Drive, Amarillo, Texas 79106, USA
| | | | | | | |
Collapse
|
12
|
Fuller A, Yahikozawa H, So EY, Dal Canto M, Koh CS, Welsh CJ, Kim BS. Castration of male C57L/J mice increases susceptibility and estrogen treatment restores resistance to Theiler's virus-induced demyelinating disease. J Neurosci Res 2007; 85:871-81. [PMID: 17253641 DOI: 10.1002/jnr.21184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelination in selective mouse strains. We have previously demonstrated that the males of C57L mice are significantly more susceptible to TMEV-induced demyelinating disease. To assess further the hormonal influence for this gender-associated differential susceptibility, estrogen-treated, castrated C57L mice were infected with TMEV and compared with sham-operated and/or placebo-treated mice. Interestingly, castration further elevated the susceptibility to virally induced demyelinating disease compared with sham-castrated control mice, and prolonged treatment of castrated mice with estrogen restored the resistance to the level of control mice. These results strongly suggest that sex hormone levels contribute to the gender-biased susceptibility to TMEV-induced demyelinating disease. Mice treated with estrogen showed a significantly decreased level of virus-specific Th1 responses both in the periphery and in the CNS. In addition, in vitro estrogen treatment was able to inhibit viral replication directly in macrophages, consistent with the lower level of viral RNA in microglia/macrophages in the CNS from castrated estrogen-treated mice compared with controls. Also, estrogen treatment inhibited VCAM-1 expression induced by tumor necrosis factor-alpha in cerebral vascular endothelial (CVE) cells via inhibition of nuclear factor-kappaB (NFkappaB), which is produced in various glial cells upon TMEV infection. Overall, estrogen treatment appears to exert its effects on viral replication, induction of immune responses, as well as infiltration of activated immune cells into the CNS via inhibition of NFkappaB function.
Collapse
Affiliation(s)
- Alyson Fuller
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Werth S, Urban-Klein B, Dai L, Höbel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 2006; 112:257-70. [PMID: 16574264 DOI: 10.1016/j.jconrel.2006.02.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/03/2006] [Accepted: 02/13/2006] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) represents a powerful method for specific gene silencing. It is mediated through small double-stranded RNA molecules (small interfering RNAs, siRNAs) which sequence-specifically trigger the cleavage and subsequent degradation of their target mRNA. One critical factor that determines the success of RNAi is the ability to deliver intact siRNAs into target cells. Polyethylenimines (PEIs) are synthetic polymers with a high cationic charge density which function as transfection reagents based on their ability to compact DNA or RNA into complexes. This paper describes the application of lyophilized PEI/siRNA complexes based on a novel polyethylenimine. By fractionation of a commercially available 25-kDa PEI using gel permeation chromatography, a low molecular weight polyethylenimine (PEI F25-LMW) with superior transfection efficacy and low toxicity in various cell lines is obtained. Complexes formed in 5% glucose, but not in 150 mM NaCl, can be lyophilized and reconstituted without loss of transfection efficacy. Furthermore, PEI F25-LMW is able to complex and fully protect siRNAs against nucleolytic degradation, and delivers siRNAs into cells where they display bioactivity. Upon lyophilization and reconstitution of PEI F25-LMW-based siRNA complexes, siRNAs are still able to efficiently induce RNAi. To further demonstrate their applicability, lyophilized PEI/siRNA complexes are employed for targeting of the growth factor VEGF. Treatment of PC-3 prostate carcinoma cells with fresh or with lyophilized complexes results in decreased cell proliferation in different assays due to the siRNA-mediated downregulation of VEGF. In conclusion, siRNAs can be applied in lyophilized formulations, and lyophilized PEI F25-LMW-based siRNA complexes represent a powerful, inexpensive, non-toxic and simple ready-to-use platform for the specific and efficient targeting of genes in vitro.
Collapse
Affiliation(s)
- Stephanie Werth
- Department of Pharmacology and Toxicology, Philipps-University School of Medicine, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|