1
|
Abou Dalle I, Moukalled N, El Cheikh J, Mohty M, Bazarbachi A. Philadelphia-chromosome positive acute lymphoblastic leukemia: ten frequently asked questions. Leukemia 2024; 38:1876-1884. [PMID: 38902471 DOI: 10.1038/s41375-024-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) constitutes a distinctive cytogenetic entity associated with challenging outcomes, particularly in adult patients. Current upfront chemotherapy-tyrosine kinase inhibitor (TKI)-based therapies include first, second and third-generation TKIs that have revolutionized patient outcomes including molecular remission and overall survival. Chemotherapy-free regimens such as blinatumomab-dasatinib or blinatumomab-ponatinib offer exciting possibilities, yet challenges arise, particularly in preventing central nervous system relapse. Monitoring measurable residual disease is now a cornerstone particularly using next-generation sequencing (NGS)-Clonoseq for accurate assessment. Controversy regarding the ability to omit consolidation with allogeneic stem cell transplantation, specifically for patients achieving early molecular remission, is related to the excellent survival achieved with novel combinations in the upfront setting, however challenged by the lower disease control when transplant is utilized beyond first remission. Post-transplant maintenance introduces new dilemmas: the optimal TKI, dosing, and duration of therapy are open questions. Meanwhile, a myriad of new combinations and cellular therapies are used for relapsed Ph+ ALL, prompting us to unravel the optimal sequencing of these promising regimen. In this review, we delve into the breakthroughs and controversies in Ph+ ALL with ten commonly asked questions.
Collapse
Affiliation(s)
- Iman Abou Dalle
- Hematology-Oncology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nour Moukalled
- Hematology-Oncology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El Cheikh
- Hematology-Oncology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Ali Bazarbachi
- Hematology-Oncology Division, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
2
|
Pouriafar Y, Rostami S, Alizadghandforoush N, Barati M, Amini A, Safa M. CDC27 gene expression patterns as a potential biomarker in Acute Leukemia. Mol Biol Rep 2024; 51:865. [PMID: 39073611 DOI: 10.1007/s11033-024-09744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Treating Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) is difficult due to high relapse rates and drug resistance. Tumorigenesis is largely dependent on disruption of the cell cycle progression. While the role of Cell Division Cycle 27 (CDC27) in the anaphase-promoting complex/cyclosome is well-known, its significance in the pathophysiology of acute leukemia and its potential as a biomarker are less well understood. METHODS AND RESULTS This case-control study used samples from 100 leukemia patients (50 with ALL and 50 with AML) at Shariati Hospital in Tehran, Iran, along with 50 healthy individuals. The expression of CDC27 was analyzed using quantitative real-time PCR (RQ-PCR). Statistical analysis was done using the nonparametric Mann-Whitney U test. The results showed that AML and ALL patients had significantly higher levels of CDC27 expression compared to the control group. Although a weak correlation between CDC27 expression and hematological parameters was found, there was no significant correlation with sample type, demographics, clinical variables or prognosis. CONCLUSIONS This study highlights the potential of CDC27 as an oncogene, as well as a possible prognostic and diagnostic marker in acute leukemias. It suggests that CDC27 could be a valuable biomarker or therapeutic target in the treatment of AML and ALL.
Collapse
Affiliation(s)
- Yasaman Pouriafar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Alizadghandforoush
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rezayee F, Eisfeldt J, Skaftason A, Öfverholm I, Sayyab S, Syvänen AC, Maqbool K, Lilljebjörn H, Johansson B, Olsson-Arvidsson L, Pietras CO, Staffas A, Palmqvist L, Fioretos T, Cavelier L, Fogelstrand L, Nordlund J, Wirta V, Rosenquist R, Barbany G. Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia. Front Oncol 2023; 13:1217712. [PMID: 37664045 PMCID: PMC10470829 DOI: 10.3389/fonc.2023.1217712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods. Methods For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL. Results Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions. Discussion The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.
Collapse
Affiliation(s)
- Fatemah Rezayee
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann Christine Syvänen
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Khurram Maqbool
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | | | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Tian Y, Wang X, Ai H, Lyu X, Wang Q, Wei X, Song Y, Yin Q. The different predictive effects of the intensity and proportion of CD20 expression on the prognosis of B-lineage acute lymphocyte leukemia. EJHAEM 2022; 3:443-452. [PMID: 35846053 PMCID: PMC9176059 DOI: 10.1002/jha2.414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
The prognostic effects of the CD20 positivity have been studied extensively in B-lineage acute lymphocyte leukemia (B-ALL) patients, but the results remain controversial. The aim of this study is to investigate the different predictive effects of the intensity and proportion of CD20 expression on the prognosis for B-ALL patients by retrospective analysis. The mean fluorescence intensity (MFI) and percentage of CD20 on B-ALL cells from 206 patients with B-ALL were dynamically measured by flow cytometry, and their optimal cut-off values were determined using the receiver operating characteristic curve. Changes in MFI and percentage of CD20 at various time points and their relationship with prognosis were analyzed. We found that a low baseline CD20 MFI or high CD20 proportion was significantly associated with shorter 5-year overall survival and progression-free survival, and the combination of these two factors could more accurately predict worse survival for B-ALL patients. Furthermore, low CD20 MFI or a high CD20 proportion had different predictive effects for ALL patients with different clinical characteristics and could serve as an independent risk factor for adverse prognosis. There were significant decreases in both the intensity and proportion of CD20 after recurrence in the absence of rituximab treatment, particularly with CD20 intensity. Notably, the decrease of CD20 intensity after recurrence indicated a more shortened survival time. Finally, we conclude that a low intensity or high proportion of CD20 expression may be used as an indicator for inferior prognosis for B-ALL patients. CD20 intensity is more likely to be a more universal biomarker for worse prognosis.
Collapse
Affiliation(s)
- Yun Tian
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xiaojiao Wang
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Hao Ai
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xiaodong Lyu
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Qian Wang
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Xudong Wei
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Yongping Song
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| | - Qingsong Yin
- Department of Hematology, Henan Institute of HematologyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenanChina
| |
Collapse
|