1
|
Gehrels AM, Wagner AD, Besselink MG, Verhoeven RHA, van Eijck CHJ, van Laarhoven HWM, Wilmink JW, van der Geest LG. Gender differences in tumor characteristics, treatment allocation and survival in stage I-III pancreatic cancer: a nationwide study. Eur J Cancer 2024; 206:114117. [PMID: 38781719 DOI: 10.1016/j.ejca.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Sex and gender are modulators of health and disease and may have impact on treatment allocation and survival in patients with cancer. In this study, we analyzed the impact of sex and gender on treatment allocation and overall survival in patients with stage I-III pancreatic cancer. METHODS Patients with stage I-III pancreatic cancer diagnosed between 2015 and 2020 were selected from the nationwide Netherlands Cancer Registry. Associations between sex and gender and the probability of receiving surgical and/or systemic treatment were examined with multivariable logistic regression analyses. Overall survival was assessed with log rank test and multivariable Cox proportional hazard analysis. RESULTS Among 6855 patients, 51.2 % were female. Multivariable logistic regression analyses with adjustment for known confounders (age, performance status, comorbidities, tumor location, tumor stage and previous malignancies) showed that females less often received systemic chemotherapy compared to males (OR 0.799, 95 %CI 0.703-0.909, p < .001). No difference was found in the probability for undergoing surgical resection. Furthermore, females had worse overall survival compared to males (median OS 8.5 and 9.2 months respectively, 95 %CI 8.669-9.731). CONCLUSION This nationwide study found that female patients with stage I-III pancreatic cancer significantly less often received systemic treatment and had worse overall survival as compared to males. Disparities in pancreatic cancer care can be decreased by recognizing and resolving potential obstacles or biases in treatment decision-making.
Collapse
Affiliation(s)
- A M Gehrels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands.
| | - A D Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M G Besselink
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - R H A Verhoeven
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, Netherlands
| | - C H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - J W Wilmink
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands
| | - L G van der Geest
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, the Netherlands; Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, Netherlands.
| |
Collapse
|
2
|
Berardi R, Rossi F, Papa R, Appetecchia M, Baggio G, Bianchini M, Mazzei T, Maria Moretti A, Ortona E, Pietrantonio F, Tarantino V, Vavalà T, Cinieri S. Gender oncology: recommendations and consensus of the Italian Association of Medical Oncology (AIOM). ESMO Open 2024; 9:102243. [PMID: 38394984 PMCID: PMC10937209 DOI: 10.1016/j.esmoop.2024.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Following the development of gender medicine in the past 20 years, more recently in the field of oncology an increasing amount of evidence suggests gender differences in the epidemiology of cancers, as well as in the response and toxicity associated with therapies. In a gender approach, critical issues related to sexual and gender minority (SGM) populations must also be considered. MATERIALS AND METHODS A working group of opinion leaders approved by the Italian Association of Medical Oncology (AIOM) has been set up with the aim of drafting a shared document on gender oncology. Through the 'consensus conference' method of the RAND/University of California Los Angeles (UCLA) variant, the members of the group evaluated statements partly from the scientific literature and partly produced by the experts themselves [good practice points (GPPs)], on the following topics: (i) Healthcare organisation, (ii) Therapy, (iii) Host factors, (iv) Cancer biology, and (v) Communication and social interventions. Finally, in support of each specific topic, they considered it appropriate to present some successful case studies. RESULTS A total of 42 articles met the inclusion criteria, from which 50 recommendations were extracted. Panel participants were given the opportunity to propose additional evidence from studies not included in the research results, from which 32 statements were extracted, and to make recommendations not derived from literature such as GPPs, four of which have been developed. After an evaluation of relevance by the panel, it was found that 81 recommendations scored >7, while 3 scored between 4 and 6.9, and 2 scored below 4. CONCLUSIONS This consensus and the document compiled thereafter represent an attempt to evaluate the available scientific evidence on the theme of gender oncology and to suggest standard criteria both for scientific research and for the care of patients in clinical practice that should take gender into account.
Collapse
Affiliation(s)
- R Berardi
- Medical Oncology, Polytechnic University of Marche Region, Ancona; Medical Oncology, AOU Marche, Ancona, Italy - National Councilor AIOM (Italian Association of Medical Oncology); Treasurer AIOM (Italian Association of Medical Oncology).
| | - F Rossi
- Medical Oncology, Polytechnic University of Marche Region, Ancona
| | - R Papa
- Quality, Risk Management and Health Technology Innovation Unit, Department of Staff, AOU Marche, Ancona
| | - M Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome
| | - G Baggio
- President of the Italian Research Center for Gender Health and Medicine, Chair of Gender Medicine 2012-2017, University of Padua, Padua
| | - M Bianchini
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome
| | - T Mazzei
- Department of Pharmacology, University of Florence, Florence
| | - A Maria Moretti
- National President of the Scientific Society GISeG (Italian Group Health and Gender); President of the International Society IGM (International Gender Medicine)
| | - E Ortona
- Head - Center for Gender-specific Medicine, Italian National Institute of Health, Rome
| | - F Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - V Tarantino
- Medical Oncology, Polytechnic University of Marche Region, Ancona
| | - T Vavalà
- SC of Oncology 1U, Department of Oncology, AOU Città della Salute e della Scienza, Torino; AIOM (Italian Association of Medical Oncology); GISeG (Italian Group Health and Gender)
| | - S Cinieri
- Medical Oncology and Breast Unit, Perrino Hospital, Brindisi; President of AIOM Foundation (Italian Association of Medical Oncology), Italy
| |
Collapse
|
3
|
Bhattacharya S, Sadhukhan D, Saraswathy R. Role of sex in immune response and epigenetic mechanisms. Epigenetics Chromatin 2024; 17:1. [PMID: 38247002 PMCID: PMC10802034 DOI: 10.1186/s13072-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.
Collapse
Affiliation(s)
- Sombodhi Bhattacharya
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Debasmita Sadhukhan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Radha Saraswathy
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
van Eijck CWF, Mustafa DAM, Vadgama D, de Miranda NFCC, Groot Koerkamp B, van Tienhoven G, van der Burg SH, Malats N, van Eijck CHJ. Enhanced antitumour immunity following neoadjuvant chemoradiotherapy mediates a favourable prognosis in women with resected pancreatic cancer. Gut 2024; 73:311-324. [PMID: 37709493 PMCID: PMC10850691 DOI: 10.1136/gutjnl-2023-330480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND This study investigates sex disparities in clinical outcomes and tumour immune profiles in patients with pancreatic ductal adenocarcinoma (PDAC) who underwent upfront resection or resection preceded by gemcitabine-based neoadjuvant chemoradiotherapy (nCRT). METHODS Patients originated from the PREOPANC randomised controlled trial. Upfront surgery was performed in 82 patients, and 66 received nCRT before resection. The impact of sex on overall survival (OS) was investigated using Cox proportional hazards models. The immunological landscape within the tumour microenvironment (TME) was mapped using transcriptomic and spatial proteomic profiling. RESULTS The 5-year OS rate differed between the sexes following resection preceded by nCRT, with 43% for women compared with 22% for men. In multivariate analysis, the female sex was a favourable independent prognostic factor for OS only in the nCRT group (HR 0.19; 95% CI 0.07 to 0.52). Multivariate heterogeneous treatment effects analysis revealed a significant interaction between sex and treatment, implying increased nCRT efficacy among women with resected PDAC. The TME of women contained fewer protumoural CD163+MRC1+M2 macrophages than that of men after nCRT, as indicated by transcriptomic and validated using spatial proteomic profiling. CONCLUSION PDAC tumours of women are more sensitive to gemcitabine-based nCRT, resulting in longer OS after resection compared with men. This may be due to enhanced immunity impeding the infiltration of protumoral M2 macrophages into the TME. Our findings highlight the importance of considering sex disparities and mitigating immunosuppressive macrophage polarisation for personalised PDAC treatment.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Dana A M Mustafa
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Casper H J van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| |
Collapse
|
5
|
Roberts BK, Collado G, Barnes BJ. Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189061. [PMID: 38141865 DOI: 10.1016/j.bbcan.2023.189061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY 11030, United States of America
| | - Gilbert Collado
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America.
| |
Collapse
|
6
|
Pearce H, Croft W, Nicol SM, Margielewska-Davies S, Powell R, Cornall R, Davis SJ, Marcon F, Pugh MR, Fennell É, Powell-Brett S, Mahon BS, Brown RM, Middleton G, Roberts K, Moss P. Tissue-Resident Memory T Cells in Pancreatic Ductal Adenocarcinoma Coexpress PD-1 and TIGIT and Functional Inhibition Is Reversible by Dual Antibody Blockade. Cancer Immunol Res 2023; 11:435-449. [PMID: 36689623 PMCID: PMC10068448 DOI: 10.1158/2326-6066.cir-22-0121] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor clinical outlook. Responses to immune checkpoint blockade are suboptimal and a much more detailed understanding of the tumor immune microenvironment is needed if this situation is to be improved. Here, we characterized tumor-infiltrating T-cell populations in patients with PDAC using cytometry by time of flight (CyTOF) and single-cell RNA sequencing. T cells were the predominant immune cell subset observed within tumors. Over 30% of CD4+ T cells expressed a CCR6+CD161+ Th17 phenotype and 17% displayed an activated regulatory T-cell profile. Large populations of CD8+ tissue-resident memory (TRM) T cells were also present and expressed high levels of programmed cell death protein 1 (PD-1) and TIGIT. A population of putative tumor-reactive CD103+CD39+ T cells was also observed within the CD8+ tumor-infiltrating lymphocytes population. The expression of PD-1 ligands was limited largely to hemopoietic cells whilst TIGIT ligands were expressed widely within the tumor microenvironment. Programmed death-ligand 1 and CD155 were expressed within the T-cell area of ectopic lymphoid structures and colocalized with PD-1+TIGIT+ CD8+ T cells. Combinatorial anti-PD-1 and TIGIT blockade enhanced IFNγ secretion and proliferation of T cells in the presence of PD-1 and TIGIT ligands. As such, we showed that the PDAC microenvironment is characterized by the presence of substantial populations of TRM cells with an exhausted PD-1+TIGIT+ phenotype where dual checkpoint receptor blockade represents a promising avenue for future immunotherapy.
Collapse
Affiliation(s)
- Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Samantha M. Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard Powell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard Cornall
- Nuffield Department of Medicine and Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Francesca Marcon
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew R. Pugh
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Éanna Fennell
- Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, Limerick, Ireland
| | - Sarah Powell-Brett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Brinder S. Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Keith Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Iliadi C, Verset L, Bouchart C, Martinive P, Van Gestel D, Krayem M. The current understanding of the immune landscape relative to radiotherapy across tumor types. Front Immunol 2023; 14:1148692. [PMID: 37006319 PMCID: PMC10060828 DOI: 10.3389/fimmu.2023.1148692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Collapse
Affiliation(s)
- Chrysanthi Iliadi
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|
8
|
Chemotherapy to potentiate the radiation-induced immune response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:143-173. [PMID: 36997268 DOI: 10.1016/bs.ircmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Chemoradiation (CRT) is a conventional therapy used in local cancers, especially when they are locally advanced. Studies have shown that CRT induces strong anti-tumor responses involving several immune effects in pre-clinical models and humans. In this review, we have described the various immune effects involved in CRT efficacy. Indeed, effects such as immunological cell death, activation and maturation of antigen-presenting cells, and activation of an adaptive anti-tumor immune response are attributed to CRT. As often described in other therapies, various immunosuppressive mechanisms mediated, in particular, by Treg and myeloid populations may reduce the CRT efficacy. We have therefore discussed the relevance of combining CRT with other therapies to potentiate the CRT-induced anti-tumor effects.
Collapse
|
9
|
Costa AD, Väyrynen SA, Chawla A, Zhang J, Väyrynen JP, Lau MC, Williams HL, Yuan C, Morales-Oyarvide V, Elganainy D, Singh H, Cleary JM, Perez K, Ng K, Freed-Pastor W, Mancias JD, Dougan SK, Wang J, Rubinson DA, Dunne RF, Kozak MM, Brais L, Reilly E, Clancy T, Linehan DC, Chang DT, Hezel AF, Koong AC, Aguirre A, Wolpin BM, Nowak JA. Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clin Cancer Res 2022; 28:5167-5179. [PMID: 36129461 PMCID: PMC9999119 DOI: 10.1158/1078-0432.ccr-22-1125] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Neoadjuvant chemotherapy is increasingly administered to patients with resectable or borderline resectable pancreatic ductal adenocarcinoma (PDAC), yet its impact on the tumor immune microenvironment is incompletely understood. EXPERIMENTAL DESIGN We employed quantitative, spatially resolved multiplex immunofluorescence and digital image analysis to identify T-cell subpopulations, macrophage polarization states, and myeloid cell subpopulations in a multi-institution cohort of up-front resected primary tumors (n = 299) and in a comparative set of resected tumors after FOLFIRINOX-based neoadjuvant therapy (n = 36) or up-front surgery (n = 30). Multivariable-adjusted Cox proportional hazards models were used to evaluate associations between the immune microenvironment and patient outcomes. RESULTS In the multi-institutional resection cohort, immune cells exhibited substantial heterogeneity across patient tumors and were located predominantly in stromal regions. Unsupervised clustering using immune cell densities identified four main patterns of immune cell infiltration. One pattern, seen in 20% of tumors and characterized by abundant T cells (T cell-rich) and a paucity of immunosuppressive granulocytes and macrophages, was associated with improved patient survival. Neoadjuvant chemotherapy was associated with a higher CD8:CD4 ratio, greater M1:M2-polarized macrophage ratio, and reduced CD15+ARG1+ immunosuppressive granulocyte density. Within neoadjuvant-treated tumors, 72% showed a T cell-rich pattern with low immunosuppressive granulocytes and macrophages. M1-polarized macrophages were located closer to tumor cells after neoadjuvant chemotherapy, and colocalization of M1-polarized macrophages and tumor cells was associated with greater tumor pathologic response and improved patient survival. CONCLUSIONS Neoadjuvant chemotherapy with FOLFIRINOX shifts the PDAC immune microenvironment toward an anti-tumorigenic state associated with improved patient survival.
Collapse
Affiliation(s)
- Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Sara A. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Akhil Chawla
- Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Juha P. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hannah L. Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Dalia Elganainy
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - William Freed-Pastor
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jiping Wang
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Richard F. Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Margaret M. Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Emma Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - David C. Linehan
- Department of General Surgery, University of Rochester Medical Center, Rochester, NY
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Aram F. Hezel
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Albert C. Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Zhang H, Ye L, Yu X, Jin K, Wu W. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front Immunol 2022; 13:956984. [PMID: 36225934 PMCID: PMC9548645 DOI: 10.3389/fimmu.2022.956984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer has an exclusive inhibitory tumor microenvironment characterized by a dense mechanical barrier, profound infiltration of immunosuppressive cells, and a lack of penetration of effector T cells, which constitute an important cause for recurrence and metastasis, resistance to chemotherapy, and insensitivity to immunotherapy. Neoadjuvant therapy has been widely used in clinical practice due to its many benefits, including the ability to improve the R0 resection rate, eliminate tumor cell micrometastases, and identify highly malignant tumors that may not benefit from surgery. In this review, we summarize multiple aspects of the effect of neoadjuvant therapy on the immune microenvironment of pancreatic cancer, discuss possible mechanisms by which these changes occur, and generalize the theoretical basis of neoadjuvant chemoradiotherapy combined with immunotherapy, providing support for the development of more effective combination therapeutic strategies to induce potent immune responses to tumors.
Collapse
Affiliation(s)
- Huiru Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| | - Weiding Wu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| |
Collapse
|
11
|
Sui Q, Chen Z, Hu Z, Huang Y, Liang J, Bi G, Bian Y, Zhao M, Zhan C, Lin Z, Wang Q, Tan L. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med 2022; 20:171. [PMID: 35410350 PMCID: PMC9004122 DOI: 10.1186/s12967-022-03372-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
Objectives Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. Methods Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. Results 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. Conclusions Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03372-0.
Collapse
|
12
|
Wang M, Hu Q, Huang J, Zhao X, Shao S, Zhang F, Yao Z, Ping Y, Liang T. Engineered a dual-targeting biomimetic nanomedicine for pancreatic cancer chemoimmunotherapy. J Nanobiotechnology 2022; 20:85. [PMID: 35177078 PMCID: PMC8851720 DOI: 10.1186/s12951-022-01282-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/21/2022] [Indexed: 12/23/2022] Open
Abstract
The therapeutic effect of chemotherapeutics such as gemcitabine against pancreatic cancer is considerably attenuated by immune-suppressive tumor microenvironment. Improvement of chemotherapeutic efficacy by targeting tumor-associated macrophage and reprograming tumor microenvironment to enhance their efficacy may become a promising strategy. To this end, we developed a biomimetic dual-targeting nanomedicine (PG@KMCM) where gemcitabine-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles are coated with a layer of bioengineered cancer cell membrane that stably expresses peptides targeting M2-like macrophages (M2pep) while reserving tumor-associated antigens (TAAs). The PG@KMCM nanomedicine enables the simultaneous targeted delivery of gemcitabine to pancreatic tumor sites and TAMs to potentiate its therapeutic effects. Furthermore, the combination of an immune checkpoint inhibitor (PD-L1 antibody) with PG@KMCM synergistically enhanced the anti-tumoral effect by reprogramming the immune-suppressive tumor microenvironment, including the elimination of PD-L1-positive macrophages and the downregulation of PD-L1 expression. Our study proved dual-targeting PG@KMCM nanomedicine in combination with PD-L1 immune checkpoint inhibitor therapy is able to effectively reprogram the tumor microenvironment and kill pancreatic cancer cells to enhance overall therapeutic potential.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Junmin Huang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shiyi Shao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuo Yao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China.
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China.
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|