1
|
Yang L, Shu J, Liu Y, Jin YX, Chen SS, Huang W, Xu XQ, Xie LY. Synthesis of S-Alkyl Dithiocarbamates via Multicomponent Reaction of Cyclic Sulfonium Salts with CS 2 and Amines. J Org Chem 2024; 89:15248-15263. [PMID: 39360740 DOI: 10.1021/acs.joc.4c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A convenient and practical method for the synthesis of various S-alkyl dithiocarbamates through three-component reaction of sulfonium salts, CS2 and amines has been developed. The reaction proceeds efficiently without any catalyst and additive under mild and open-air conditions, making it potential applications in pharmaceutical chemistry and sulfur chemistry.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jia Shu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Yun Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Yuan-Xin Jin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si Si Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Wei Huang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xiang-Qin Xu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
2
|
Shahab M, Danial M, Duan X, Khan T, Liang C, Gao H, Chen M, Wang D, Zheng G. Machine learning-based drug design for identification of thymidylate kinase inhibitors as a potential anti-Mycobacterium tuberculosis. J Biomol Struct Dyn 2024; 42:3874-3886. [PMID: 37232453 DOI: 10.1080/07391102.2023.2216278] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The rise of antibiotic-resistant Mycobacterium tuberculosis (Mtb) has reduced the availability of medications for tuberculosis therapy, resulting in increased morbidity and mortality globally. Tuberculosis spreads from the lungs to other parts of the body, including the brain and spine. Developing a single drug can take several decades, making drug discovery costly and time-consuming. Machine learning algorithms like support vector machines (SVM), k-nearest neighbor (k-NN), random forest (RF) and Gaussian naive base (GNB) are fast and effective and are commonly used in drug discovery. These algorithms are ideal for the virtual screening of large compound libraries to classify molecules as active or inactive. For the training of the models, a dataset of 307 was downloaded from BindingDB. Among 307 compounds, 85 compounds were labeled as active, having an IC50 below 58 mM, while 222 compounds were labeled inactive against thymidylate kinase, with 87.2% accuracy. The developed models were subjected to an external ZINC dataset of 136,564 compounds. Furthermore, we performed the 100-ns dynamic simulation and post trajectories analysis of compounds having good interaction and score in molecular docking. As compared to the standard reference compound, the top three hits revealed greater stability and compactness. In conclusion, our predicted hits can inhibit thymidylate kinase overexpression to combat Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Muhammad Danial
- University of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Xiuyuan Duan
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Taimur Khan
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Chaoqun Liang
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Hanzi Gao
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Meiyu Chen
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Daixi Wang
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
3
|
Xie LY, Liu C, Wang SY, Tian ZY, Peng S. Ts 2O mediated deoxygenative C2-dithiocarbamation of quinoline N-oxides with CS 2 and amines. RSC Adv 2024; 14:14465-14469. [PMID: 38699687 PMCID: PMC11063682 DOI: 10.1039/d4ra02003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
A general, efficient and practical protocol for Ts2O promoted deoxygenative dithiocarbamation of quinoline N-oxides with in situ generated dithiocarbamic acids from CS2 and amines is reported. The reaction proceeded well under transition-metal free conditions to obtain a variety of novel quinoline-dithiocarbamate compounds with wide functional group tolerance and good to high yields.
Collapse
Affiliation(s)
- Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Chu Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Si-Yu Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| |
Collapse
|
4
|
Zhao MY, Tang JJ, Lin YJ, Tian ZY, Peng S, Xie LY. Ts 2O Promoted Deoxygenative C-H Dithiocarbonation of Quinoline N-Oxides with Potassium O-Alkyl Xanthates. J Org Chem 2024; 89:5560-5572. [PMID: 38564232 DOI: 10.1021/acs.joc.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A simple, efficient, and practical method for the synthesis of S-quinolyl xanthates was developed via Ts2O-promoted deoxygenative C-H dithiocarbonation of quinoline N-oxides with various potassium O-alkyl xanthates. The reaction performed well under transition-metal-free, base-free, and room-temperature conditions with wide substrate tolerance. Employing potassium O-tert-butyl xanthate (tBuOCS2K) as a nucleophile, some valuable quinoline-2-thiones were unexpectedly obtained in a one-pot reaction without any additional base.
Collapse
Affiliation(s)
- Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| |
Collapse
|
5
|
Wu LY, Tian Huang, Tian ZY, Xu XQ, Peng S, Xie LY. TsCl promoted deoxygenative phosphorothiolation of quinoline N-oxides towards S-quinolyl phosphorothioates. Org Biomol Chem 2024; 22:2409-2413. [PMID: 38411219 DOI: 10.1039/d4ob00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A convenient, efficient and practical approach for the synthesis of S-quinolyl phosphorothioates via cheap TsCl promoted deoxygenative C2-H phosphorothiolation of quinoline N-oxides with readily available triethylammonium O,O-dialkylphosphorothioates was developed. The reaction performed well under transition-metal-free conditions at room temperature with a very short reaction time (10-20 min). Preliminary studies showed that the current transformation underwent a nucleophilic substitution process.
Collapse
Affiliation(s)
- Li-Yao Wu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Tian Huang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Xiang-Qin Xu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| |
Collapse
|
6
|
Peng S, Zhao MY, Tang JJ, Xie LY. Ball milling synthesis of S-quinolyl xanthates via coupling of haloquinolines with potassium O-alkyl xanthates. Org Biomol Chem 2023; 21:9086-9090. [PMID: 37946513 DOI: 10.1039/d3ob01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
An environmentally benign protocol that provides various S-quinolyl xanthates via a ball milling enabled cross coupling reaction of haloquinolines and readily available potassium O-alkyl xanthates is first reported. The reaction proceeded well under mild, transition metal- and solvent-free conditions, making it an attractive method for the introduction of xanthates into the quinoline scaffold.
Collapse
Affiliation(s)
- Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| |
Collapse
|
7
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
8
|
Acharya PT, Bhavsar ZA, Jethava DJ, Rajani DP, Pithawala E, Patel HD. Synthesis, characterization, biological evaluation and computational study of benzimidazole hybrid thiosemicarbazide derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi T. Acharya
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Zeel A. Bhavsar
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Divya J. Jethava
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat Gujarat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology, Khyati Institute of Science, Palodia Ahmedabad Gujarat India
| | | |
Collapse
|
9
|
Ahmad T, Khan FU, Ali S, Rahman AU, Ali Khan S. Assessment of without prescription antibiotic dispensing at community pharmacies in Hazara Division, Pakistan: A simulated client's study. PLoS One 2022; 17:e0263756. [PMID: 35176043 PMCID: PMC8853528 DOI: 10.1371/journal.pone.0263756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotics dispensing without a prescription is an irrational practice and can increase the risk of antibiotic resistance, which is a significant public health concern around the globe. This study was aimed to determine the extent to which antibiotics are supplied without prescription in the community pharmacies (CPs) at Hazara Division from November 2020 to February 2021. The simulated client method (SCM) was used, and the data were gathered, recorded, and analyzed through different statistical methods with descriptive and inferential techniques. The antibiotic dispensing was observed in CPs (90.5%), the most dispensed antibiotics were azithromycin (29.4%) and ciprofloxacin (46.5%) respectively. Furthermore, visited medical stores/ drug outlets, 9.5% of the visited stores denied dispensing of antibiotics because they preferred a referral to visit physicians (23. 9%) and (12.8%) did not had the antibiotics at the time of visits. Antibiotics were more obtainable in retail medical stores (AOR = 8.6, 95 percent Cl: 3.0–24.7; p = 0.001) than in pharmacies. In rural areas antibiotics dispensing was more (p = 0.004) as compared to urban areas. Staff members also had asked about patient’s (17.7%) symptoms and drug allergies (12.3% and 3.9%), and (1.5%) they consoled them about their medications. The findings of this study indicate that nonprescription antibiotic sales are very common, despite national rules prohibiting this activity. When the simulated Client requested for any medication to relieve his or her discomfort, many antibiotics were given out without a prescription. Pharmacies/medical stores in Hazara Division selling antibiotics without a prescription are worrying and need immediate action by regulators.
Collapse
Affiliation(s)
- Tawseef Ahmad
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Faiz Ullah Khan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Sayyad Ali
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Asad Ur Rahman
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
- * E-mail: ,
| |
Collapse
|
10
|
Satyanarayana N, Sathish K, Nagaraju S, Pawar R, Faizan M, Arumugavel M, Shirisha T, Kashinath D. Metal-free, one-pot synthesis of 2-styrylquinolines via Friedländer annulation and sp3 C–H activation using 1,3-dimethylurea and l-tartaric acid (3 : 1) as a deep eutectic solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj00132a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functionalized 2-styrylquinolines are prepared using DMU + l-(+)-tartaric acid as deep eutectic solvent. DFT calculations supported the experimental results on role of DES as catalyst. The absorption-emission spectra indicating that these compounds can be useful as fluorescent probes.
Collapse
Affiliation(s)
- Neeli Satyanarayana
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Kota Sathish
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Sakkani Nagaraju
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Ravinder Pawar
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Mohmmad Faizan
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| | - Murgan Arumugavel
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | | | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India
| |
Collapse
|
11
|
Matsa R, Makam P, Sethi G, Thottasseri AA, Kizhakkandiyil AR, Ramadas K, Mariappan V, Pillai AB, Kannan T. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. RSC Adv 2022; 12:18333-18346. [PMID: 35799934 PMCID: PMC9215125 DOI: 10.1039/d2ra02163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
An array of pyridine appended 2-hydrazinylthiazole derivatives has been synthesized to discover novel chemotherapeutic agents for Mycobacterium tuberculosis (Mtb). The drug-likeness of pyridine appended 2-hydrazinylthiazole derivatives was validated using the Lipinski and Veber rules. The designed thiazole molecules have been synthesized through Hantzsch thiazole methodologies. The in vitro antimycobacterial studies have been conducted using Luciferase reporter phage (LRP) assay. Out of thirty pyridine appended 2-hydrazinylthiazole derivatives, the compounds 2b, 3b, 5b, and 8b have exhibited good antimycobacterial activity against Mtb, an H37Rv strain with the minimum inhibitory concentration in the range of 6.40–7.14 μM. In addition, in vitro cytotoxicity of active molecules has been observed against Human Embryonic Kidney Cell lines (HEK293t) using MTT assay. The compounds 3b and 8b are nontoxic and their cell viability is 87% and 96.71% respectively. The in silico analyses of the pyridine appended 2-hydrazinylthiazole derivatives have been studied to find the mode of binding of the active compounds with KasA protein of Mtb. The active compounds showed a strong binding score (−5.27 to −6.23 kcal mol−1). Thirty novel pyridine-appended 2-hydrazinylthiazole derivatives have been synthesized and tested for their antimycobacterial activity against Mictrobactrium tuberculosis, H37Rv strain.![]()
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry 605 014, India
| | - Parameshwar Makam
- Dr Param Laboratories, Plot No. 478, BN. Reddy Nagar, Cherlapally, Hyderabad, Telangana 500 051, India
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Guneswar Sethi
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | | | | | - Krishna Ramadas
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | | |
Collapse
|
12
|
Advances in the application of 1,2,4-triazole-containing hybrids as anti-tuberculosis agents. Future Med Chem 2021; 13:2107-2124. [PMID: 34698509 DOI: 10.4155/fmc-2020-0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis is a deadly communicable disease caused by the bacillus Mycobacterium tuberculosis (MTB), and pulmonary tuberculosis accounts for over 80% of the total cases. The 1,2,4-triazole is a privileged structure in the discovery of new drugs, and its derivatives act on various targets in MTB. In particular, 1,2,4-triazole hybrids can not only exert dual or multiple antitubercular mechanisms of action but also have the potential to enhance efficacy and reduce side effects. The present work aims to summarize the current status of 1,2,4-triazole hybrids as potential antitubercular agents, covering articles published between 2010 and 2020, to aid the further rational design of novel potential drug candidates endowed with higher efficacy, better compliance and fewer side effects.
Collapse
|
13
|
Küçükbay H, Gönül Z, Küçükbay F, Tekin Z, Angeli A, Bartolucci G, Supuran CT, Tatlıcı E, Apohan E, Yeşilada Ö. Synthesis of new 7-amino-3,4-dihydroquinolin-2(1H)-one-peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant, and cytotoxic activities. Arch Pharm (Weinheim) 2021; 354:e2100122. [PMID: 34313324 DOI: 10.1002/ardp.202100122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
Six new monopeptides, seven new dipeptides, and two deprotected monopeptide dihydroquinolinone conjugates were prepared by the benzothiazole-mediated method and their structures were confirmed by nuclear magnetic resonance, mass, infrared spectroscopy, and elemental analysis methods. The human carbonic anhydrase (hCA) I and hCA II enzyme inhibition activities of the compounds were determined using the stopped-flow instrument. The synthesized peptide-dihydroquinolinone conjugates 2, 3, 6, 10, 13, and 15 showed inhibition against the hCA II enzyme in the range of 15.7-65.7 µM. However, none of the compounds showed inhibition of hCA I at a concentration of 100 µM. The antioxidant activities of the compounds were also examined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method at concentrations of 12.5-125 µg/ml, but when compared with the standard antioxidant compounds α-tocopherol and butylated hydroxyanisole (BHA), weak antioxidant activities were detected. The cytotoxic effects of four compounds against the A549 and BEAS-2B cell lines were also investigated. Among the compounds studied, compound 7 was found to be most effective, with the IC50 values on the A549 cells for 48 and 72 h being 26.87 and 9.979 µg/ml, respectively, and the IC50 values on the BEAS-2B cells being >100 µg/ml. None of the tested compounds showed antimicrobial activity in the concentration range (800-1.56 µg/ml) studied.
Collapse
Affiliation(s)
- Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Zeynep Gönül
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Fatümetüzzehra Küçükbay
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Zehra Tekin
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche e Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Gianluca Bartolucci
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche e Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche e Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Eray Tatlıcı
- Department of Biology, Faculty of Science, İnönü University, Malatya, Turkey
| | - Elif Apohan
- Department of Biology, Faculty of Science, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Science, İnönü University, Malatya, Turkey
| |
Collapse
|
14
|
Khidre RE, Radini IM, Ameen TA, Abdelgawad AA. Triazoloquinolines I: Synthetic Methods and Pharmacological Properties of [1,2,3]triazoloquinoline Derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210202122645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with the synthetic methods and pharmacological properties of
[1,2,3]triazoloquinoline derivatives. There are ten isomers of fused [1,2,3]triazoloquinoline
according to the junction between triazole and quinoline. The synthetic methods are subdivided
into groups according to the type of isomers. The pharmacological activity of
[1,2,3]triazoloquinoline was also reported.
Collapse
Affiliation(s)
- Rizk E. Khidre
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Ibrahim M.A. Radini
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Tahah A. Ameen
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
15
|
Bentabed-Ababsa G, Picot L, Mongin F, Bouarfa S, Erb W, Thiéry V, Roisnel T, Dorcet V. Iodothiophenes and Related Compounds as Coupling Partners in Copper-Mediated N-Arylation of Anilines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
N-Arylation of various 2-acylated anilines with different electron-rich heteroaryl iodides (2- and 3-iodothiophenes, 2- and 3-iodobenzothiophenes, 2-iodobenzofuran) was achieved by using activated copper and potassium carbonate in dibutyl ether at reflux. The reactivity of the different heteroaryl iodides and anilines employed was discussed and rationalized on the basis of their electronic features. Subsequent cyclization by aromatic electrophilic substitution easily took place in the case of C2-free (benzo)thienyl or C3-free (benzo)furyl derivatives, affording original tri- and tetracycles. The antiproliferative activity of most of them was evaluated in A2058 melanoma cells and revealed four chlorinated tetracycles as effective growth inhibitors.
Collapse
Affiliation(s)
- Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella
| | - Laurent Picot
- La Rochelle Université, Laboratoire Littoral Environnement et Sociétés, UMRi CNRS 7266, Université de La Rochelle
| | - Florence Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
| | - Salima Bouarfa
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella
| | - William Erb
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
| | - Valérie Thiéry
- La Rochelle Université, Laboratoire Littoral Environnement et Sociétés, UMRi CNRS 7266, Université de La Rochelle
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
| |
Collapse
|
16
|
Ganesan MS, Raja KK, Murugesan S, Karankumar B, Faheem F, Thirunavukkarasu S, Shetye G, Ma R, Franzblau SG, Wan B, Rajagopal G. Quinoline‐Proline, Triazole Hybrids: Design, Synthesis, Antituberculosis, Molecular Docking, and ADMET Studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | - Banoth Karankumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | - Faheem Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy Birla Institute of Technology and Science, Pilani Campus Pilani, Rajasthan India
| | | | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
| | - Gurusamy Rajagopal
- PG & Research Department of Chemistry Chikkanna Government Arts College Tiruppur India
| |
Collapse
|
17
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
18
|
da Silva ET, de Andrade GF, Araújo ADS, Lourenço MCS, de Souza MVN. Antibacterial activity of new substituted 4-N-alkylated-2-trifluoromethyl-quinoline analogues against sensitive and resistant Mycobacterium tuberculosis strains. Eur J Pharm Sci 2021; 157:105596. [DOI: 10.1016/j.ejps.2020.105596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
|
19
|
Küçükbay H, Gönül Z, Küçükbay FZ, Angeli A, Bartolucci G, Supuran CT. Preparation, carbonic anhydrase enzyme inhibition and antioxidant activity of novel 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives incorporating mono or dipeptide moiety. J Enzyme Inhib Med Chem 2020; 35:1021-1026. [PMID: 32297533 PMCID: PMC7178833 DOI: 10.1080/14756366.2020.1751620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New dipeptide–dihydroquinolinone derivatives were successfully synthesised by benzotriazole mediated nucleophilic acyl substitution reaction and their structures were elucidated by spectroscopic and analytic techniques. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against four human (h) isoforms, hCA I, hCA II, hCA IX and hCA XII. While all compounds showed moderate to good in vitro CA inhibitory properties against hCA IX and hCA XII with inhibition constants in the micromolar level (37.7–86.8 and 2.0–8.6 µM, respectively), they did not show inhibitory activity against hCA I and hCA II up to 100 µM concentration. The antioxidant capacity of the peptide–dihydroquinolinone conjugates was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Most of the synthesised compounds showed low antioxidant activities compared to the control antioxidant compounds BHA and α-tocopherol.
Collapse
Affiliation(s)
- Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Zeynep Gönül
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - F Zehra Küçükbay
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Gianluca Bartolucci
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche e Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy
| |
Collapse
|
20
|
R. C, Pise A, Shah SK, D. R, Baluni A, Tiwari KN. Aqueous NH3-mediated syntheses of 2-styrylquinoline-4-carboxamides by domino ring opening cyclization strategy. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1822409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chandran R.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| | - Ashwini Pise
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| | - Suraj Kumar Shah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| | - Rahul D.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| | - Anirudh Baluni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| | - Keshri Nath Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Lucknow, India
| |
Collapse
|
21
|
Akester JN, Njaria P, Nchinda A, Le Manach C, Myrick A, Singh V, Lawrence N, Njoroge M, Taylor D, Moosa A, Smith AJ, Brooks EJ, Lenaerts AJ, Robertson GT, Ioerger TR, Mueller R, Chibale K. Synthesis, Structure-Activity Relationship, and Mechanistic Studies of Aminoquinazolinones Displaying Antimycobacterial Activity. ACS Infect Dis 2020; 6:1951-1964. [PMID: 32470286 PMCID: PMC7359024 DOI: 10.1021/acsinfecdis.0c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Phenotypic whole-cell screening against Mycobacterium tuberculosis (Mtb) in glycerol–alanine–salts
supplemented with Tween 80 and iron (GASTE-Fe) media led to the identification
of a 2-aminoquinazolinone hit compound, sulfone 1 which
was optimized for solubility by replacing the sulfone moiety with
a sulfoxide 2. The synthesis and structure–activity
relationship (SAR) studies identified several compounds with potent
antimycobacterial activity, which were metabolically stable and noncytotoxic.
Compound 2 displayed favorable in vitro properties and was therefore selected for in vivo pharmacokinetic (PK) studies where it was found to be extensively
metabolized to the sulfone 1. Both derivatives exhibited
promising PK parameters; however, when 2 was evaluated
for in vivo efficacy in an acute TB infection mouse
model, it was found to be inactive. In order to understand the in vitro and in vivo discrepancy, compound 2 was subsequently retested in vitro using
different Mtb strains cultured in different media.
This revealed that activity was only observed in media containing
glycerol and led to the hypothesis that glycerol was not used as a
primary carbon source by Mtb in the mouse lungs,
as has previously been observed. Support for this hypothesis was provided
by spontaneous-resistant mutant generation and whole genome sequencing
studies, which revealed mutations mapping to glycerol metabolizing
genes indicating that the 2-aminoquinazolinones kill Mtb in
vitro via a glycerol-dependent mechanism of action.
Collapse
Affiliation(s)
- Jessica N. Akester
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Paul Njaria
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius Nchinda
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Alissa Myrick
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Nina Lawrence
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Dale Taylor
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Atica Moosa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Anthony J. Smith
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523, United States
| | - Elizabeth J. Brooks
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523, United States
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523, United States
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523, United States
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas 77843-3112, United States
| | - Rudolf Mueller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
22
|
Abstract
A series of vinylogous imines have been prepared from anilines and cinnamaldehydes. These substrates react in superacidic media to provide quinolines and related compounds. A mechanism for the conversion is proposed which involves the cyclization of dicationic superelectrophilic intermediates. Aromatization of the quinoline ring is thought to occur by superacid-promoted elimination of benzene.
Collapse
Affiliation(s)
- Hein Vuong
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - Michael R Stentzel
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - Douglas A Klumpp
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| |
Collapse
|
23
|
Li J, Hu QL, Chen XP, Hou KQ, Chan AS, Xiong XF. Asymmetric synthesis of tetrahydropyran[3,2-c]quinolinones via an organocatalyzed formal [3 + 3] annulation of quinolinones and MBH 2-naphthoates of nitroolefin. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Yuan JM, Li J, Zhou H, Xu J, Zhu F, Liang Q, Liu Z, Huang G, Huang J. Synthesis of 3-sulfonylquinolines by visible-light promoted metal-free cascade cycloaddition involving N-propargylanilines and sodium sulfinates. NEW J CHEM 2020. [DOI: 10.1039/c9nj05248h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light promoted radical cascade reaction of N-propargylanilines with sodium sulfinates as sulfonyl radical precursors was developed under metal-free conditions.
Collapse
Affiliation(s)
- Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Jinnan Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Heyang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Fengting Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Qiuli Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- College of Chemistry and Materials
- Nanning Normal University
- Nanning 530001
- China
| |
Collapse
|
25
|
Yang J, Xiong S, Ren Y, Xiao T, Jiang Y. Copper-catalyzed cross-coupling and sequential allene-mediated cyclization for the synthesis of 1,2,3-triazolo[1,5- a]quinolines. Org Biomol Chem 2020; 18:7174-7182. [PMID: 32895689 DOI: 10.1039/d0ob00435a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this paper, a tandem reaction involving copper-catalyzed cross-coupling and allene-mediated cyclization of 1-(2-ethynylaryl)-1,4-disubstituted-1,2,3-triazole with N-tosylhydrazone has been developed. This method features operational simplicity, excellent functional group compatibility, broad substrate scope, and easily available feedstock, providing an efficient and practical strategy for the synthesis of highly functionalized 1,2,3-triazolo[1,5-a]quinolines.
Collapse
Affiliation(s)
- Jianhua Yang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
| | - Shaoqi Xiong
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
| | - Yongsheng Ren
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. China.
| |
Collapse
|
26
|
P. Copetti JP, Salbego PRS, Orlando T, Rosa JML, Fiss GF, G. de Oliveira JP, A. Vasconcellos MLA, Zanatta N, G. Bonacorso H, Martins MAP. Substituent effects on the crystallization mechanisms of 7-chloro-4-substituted-quinolines. CrystEngComm 2020. [DOI: 10.1039/d0ce00214c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystallization mechanisms of a series of fourteen 7-chloro-4-substituted-quinolines were proposed based on a retrocrystallization approach using the supramolecular cluster as demarcation.
Collapse
Affiliation(s)
- João P. P. Copetti
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Paulo R. S. Salbego
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Tainára Orlando
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Jéssica M. L. Rosa
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Gabriela F. Fiss
- Department of Chemistry
- Federal University of Paraíba (UFPB)
- João Pessoa
- Brazil
| | | | | | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Department of Chemistry
- Federal University of Santa Maria (UFSM)
- Santa Maria
- Brazil
| |
Collapse
|
27
|
Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg Med Chem Lett 2019; 29:2635-2637. [DOI: 10.1016/j.bmcl.2019.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023]
|
28
|
Xie LY, Peng S, Jiang LL, Peng X, Xia W, Yu X, Wang XX, Cao Z, He WM. AgBF4-catalyzed deoxygenative C2-amination of quinoline N-oxides with isothiocyanates. Org Chem Front 2019. [DOI: 10.1039/c8qo01128a] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A general, effective and convenient protocol for the direct synthesis of various 2-aminoquinolines (39 examples) through AgBF4-catalyzed amination of quinoline N-oxides with isothiocyanates under base-, oxidant-free and mild conditions was developed.
Collapse
Affiliation(s)
- Long-Yong Xie
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Sha Peng
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Li-Lin Jiang
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Xia Peng
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Wen Xia
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xing-Xing Wang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Wei-Min He
- Hunan Provincial Engineering Research Center for Ginkgo biloba
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| |
Collapse
|
29
|
Xu Z, Zhao S, Deng J, Wang Q, Lv Z. Design, Synthesis, and Antimycobacterial Activities of Diethylene Glycol Tethered Moxifloxacin–Isatin Hybrids. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering Zhumadian People's Republic of China
| | - Shi‐Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| | - Jia‐Lun Deng
- Haiso Technology Co., Ltd. Wuhan People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School Wuhan People's Republic of China
| | - Zao‐Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| |
Collapse
|
30
|
Xu Z, Zhao S, Deng J, Wang Q, Lv Z. Gatifloxacin–Isatin Hybrids and Their Antimycobacterial Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian Zhumadian People's Republic of China
| | - Shi‐Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| | - Jia‐Lun Deng
- Haiso Technology Co., Ltd. Wuhan People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School Wuhan People's Republic of China
| | - Zao‐Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan People's Republic of China
| |
Collapse
|
31
|
Gao T, Hu W, Zeng Z, Sun S, Wang R. Design, Synthesis, and Evaluation of Tetraethylene Glycol Tethered Ciprofloxacin–Isatin Hybrids as Novel Antitubercular Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Gao
- School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| | - Weiwei Hu
- School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| | - Shaofa Sun
- School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| | - Rang Wang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 People's Republic of China
| |
Collapse
|
32
|
Xu Z, Zhao S, Deng J, Wang Q, Lv Z. Ciprofloxacin–Isatin Hybrids and Their Antimycobacterial Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian Zhumadian 463000 People's Republic of China
| | - Shi‐Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 People's Republic of China
| | - Jia‐Lun Deng
- Haiso Technology Co., Ltd. Wuhan 430080 People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School Wuhan 430024 People's Republic of China
| | - Zao‐Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 People's Republic of China
| |
Collapse
|
33
|
Xu Z, Zhao SJ, Lv ZS, Gao F, Wang Y, Zhang F, Bai L, Deng JL. Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 2018; 162:396-406. [PMID: 30453247 DOI: 10.1016/j.ejmech.2018.11.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
Hybridization of different pharmacophores from various bioactive substances into a single molecule is the potential weapon to prevent the drug resistance since this strategy can provide new leads with complimentary activities and/or multiple pharmacological targets. Fluoroquinolone and isatin are common pharmacophores, and their derivatives possess various biological activities. Obviously, hybridization of these two pharmacophores into one molecule may result in novel candidates with broader spectrum, higher efficiency, lower toxicity as well as multiple mechanisms of action. Therefore, fluoroquinolone-isatin hybrids have the potential for clinical deployment in the control and eradication of various diseases. This review covers the recent advances of fluoroquinolone-isatin hybrids as potential anti-bacterial, anti-tubercular, anti-viral and anti-cancer agents. The structure-activity relationship is also discussed to pave the way for the further rational development of this kind of hybrids.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| | - Shi-Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, PR China
| | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, PR China
| | - Feng Gao
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yinling Wang
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China
| | - Feng Zhang
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China
| | - Liuyang Bai
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China
| | | |
Collapse
|