1
|
Şener N, Aldwib AEO. New Antibacterial 1,3,4-Thiadiazole Derivatives With Pyridine Moiety. Chem Biodivers 2024; 21:e202400522. [PMID: 38606431 DOI: 10.1002/cbdv.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
1,3,4-Thiadiazole compounds were synthesized using pyridine carboxylic acid derivatives and thiosemicarbazide derivatives. The molecular structures of the resulting compounds were characterized by spectroscopic methods such as ATR-FTIR, 1H-NMR, and elemental analysis. Its compounds were also examined for their antibacterial properties against some strains of bacteria. Five synthesized compounds showed varying antibacterial effects on Escherichia coli, Salmonella kentucky, Bacillus substilis and Klebsiella pneumoniae. This result revealed that some of the resulting compounds could be antibacterial agents.
Collapse
Affiliation(s)
- Nesrin Şener
- Department of Chemistry, Faculty of Science, Kastamonu University, 37200, Kastamonu, Turkey
| | | |
Collapse
|
2
|
Rashdan HRM, El-Sayyad GS, Shehadi IA, Abdelmonsef AH. Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules. Molecules 2023; 28:7491. [PMID: 38005213 PMCID: PMC10672871 DOI: 10.3390/molecules28227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4-9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine-pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9's antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza 12566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Ihsan A Shehadi
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
3
|
Di Martino M, Sessa L, Di Matteo M, Panunzi B, Piotto S, Concilio S. Azobenzene as Antimicrobial Molecules. Molecules 2022; 27:5643. [PMID: 36080413 PMCID: PMC9457709 DOI: 10.3390/molecules27175643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Martina Di Matteo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80126 Naples, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
4
|
David M, Budziak-Wieczorek I, Karcz D, Florescu M, Matwijczuk A. Insight into dual fluorescence effects induced by molecular aggregation occurring in membrane model systems containing 1,3,4-thiadiazole derivatives. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1083-1101. [PMID: 34515830 PMCID: PMC8566415 DOI: 10.1007/s00249-021-01569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
This work reports on biophysical insights into the excited state intramolecular proton transfer (ESIPT) processes taking place in three 1,3,4-thiadiazole derivatives that served as model compounds, on which electronic absorption, fluorescence, Fourier-transform infrared spectroscopy (FTIR), surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies were performed. The fluorescence spectra recorded in various solvents revealed an interesting dual fluorescence effect. In molecules in their monomeric form, the effect is associated with the ESIPT phenomenon, and may be further enhanced by aggregation-related effects, such as aggregation-induced emissions. Other spectroscopic studies on the selected molecules in a liposomal medium as a model revealed that, in a biomimetic environment, they can exist in both monomeric and aggregated forms. In both cases, however, the effects observed are closely related to the lipid's main phase transition temperature and the structure of the molecule. Introduction of specific substituents to the phenyl moiety either allows or prevents proton transfer from occurring in the excited state. The hydrophobicity changes in a lipid environment may result in an emergence of specific molecular forms and therefore either facilitate or hinder ESIPT processes. SPR and EIS confirmed the significant hydrophobicity changes in the model lipid systems, while FTIR measurements revealed a notable influence of 1,3,4-thiadiazoles on the fluidity of liposomal membranes. The results obtained clearly show that the thiadiazole derivatives are very good model molecules for studying hydrophobic-hydrophilic environments, and particularly with polymers or liposomes used as drug delivery systems.
Collapse
Affiliation(s)
- Melinda David
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania
| | | | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Monica Florescu
- Faculty of Medicine, Transilvania University of Brașov, 500019, Brașov, Romania.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland.
| |
Collapse
|
5
|
Banaszak-Leonard E, Fayeulle A, Franche A, Sagadevan S, Billamboz M. Antimicrobial azo molecules: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Acar Çevik U, Osmaniye D, Sağlik BN, Levent S, K. Çavuşoğlu B, Karaduman AB, D. Özkay Ü, Özkay Y, Kaplancikli ZA, Turan G. Synthesis of new benzothiazole derivatives bearing thiadiazole as monoamine oxidase inhibitors. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Begüm N. Sağlik
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Betül K. Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Abdullah B. Karaduman
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyAnadolu University Eskisehir Turkey
| | - Ümide D. Özkay
- Department of Pharmacology, Faculty of PharmacyAnadolu University Eskisehir Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
- Anadolu University, Faculty of PharmacyDoping and Narcotic Compounds Analysis Laboratory Eskişehir Turkey
| | - Zafer A. Kaplancikli
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
| | - Gülhan Turan
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu University Eskisehir Turkey
| |
Collapse
|