1
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Behçet A, Taslimi P, Şen B, Taskın-Tok T, Aktaş A, Gök Y, Aygün M, Gülçin İ. New palladium complexes with N-heterocyclic carbene and morpholine ligands: Synthesis, characterization, crystal structure, molecular docking, and biological activities. J Biochem Mol Toxicol 2024; 38:e23554. [PMID: 37855258 DOI: 10.1002/jbt.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.
Collapse
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Türkiye
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - Tuğba Taskın-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, Malatya, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Yiğit M, Yiğit B, Akdan H, Önderci M, Günal S, Taskin-Tok T, Özdemir İ. Silver(I) Complexes Bearing Amine-Functionalized N-Heterocyclic Carbenes: Synthesis, Antimicrobial and Theoretical Studies. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Behçet A, Taslimi P, Gök Y, Aktaş A, Taskin‐Tok T, Gülçin İ. New PEPPSI‐Pd‐NHC complexes bearing 4‐hydroxyphenylethyl group: Synthesis, characterization, molecular docking, and bioactivity properties. Arch Pharm (Weinheim) 2022; 355:e2200276. [DOI: 10.1002/ardp.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service Inonu University Malatya Türkiye
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Türkiye
| |
Collapse
|
6
|
Aydın A, Korkmaz N, Kısa D, Türkmenoğlu B, Karadağ A. Dicyanoargentate(I)‐based complexes induced in vivo tumor inhibition by activating apoptosis‐related pathways. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Aydın
- Department of Basic Medical Science, Faculty of Medicine Yozgat Bozok University Yozgat Türkiye
| | - Nesrin Korkmaz
- Department of Basic Sciences and Health Hemp Research Institute, Yozgat Bozok University Yozgat Türkiye
| | - Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University Bartin Türkiye
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy Erzincan Binali Yıldırım University Türkiye
| | - Ahmet Karadağ
- Department of Chemistry, Science and Art Faculty Yozgat Bozok University Yozgat Türkiye
| |
Collapse
|
7
|
Dietl MC, Vethacke V, Keshavarzi A, Mulks FF, Rominger F, Rudolph M, Mkhalid IAI, Hashmi ASK. Synthesis of Heterobimetallic Gold(I) Palladium(II) Bis(acyclic diaminocarbene) Complexes via the Isonitrile Route. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Martin C. Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Vanessa Vethacke
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Ali Keshavarzi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Ibraheem A. I. Mkhalid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Abuelizz H, Taie HAA, Bakheit AH, Mostafa GAE, Marzouk M, Rashid H, Al-Salahi R. Investigation of 4-Hydrazinobenzoic Acid Derivatives for Their Antioxidant Activity: In Vitro Screening and DFT Study. ACS OMEGA 2021; 6:31993-32004. [PMID: 34870022 PMCID: PMC8638017 DOI: 10.1021/acsomega.1c04772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 05/06/2023]
Abstract
Hydrazinobenzoic acid derivatives with isothiocyanate, benzylidene, and acid anhydride core units (1-13) were previously synthesized and fully characterized. Targets 1-13 were investigated for their antioxidant activities using different in vitro assays such as 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), ferric reducing antioxidant power (FRAP), and reducing power capability. All derivatives showed antioxidant properties in relation to the standard butylated hydroxylanisole (BHA). Superior antioxidant activities was observed for compounds 3 and 5-9 at a concentration of 20 μg/mL (70-72%) when tested by the DPPH method in comparison to BHA (92%), and compounds 1-10 showed the highest free radical quenching activity (80-85%) when examined by ABTS at 20 μg/mL in relation to BHA (85%). Density function theory (DFT) studies were carried out using the B3LYP/6-311G(d,p) level of theory. Several antioxidant descriptors were calculated for targets 1-13 compared with BHA. Targets 1-13 were proposed to exhibit their antioxidant activities via the following three proposed antioxidant mechanisms: single electron transfer (SET), hydrogen atom transfer (HAT), and sequential proton loss electron transfer (SPLET). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and electron levels for 1-13 were also determined.
Collapse
Affiliation(s)
- Hatem
A. Abuelizz
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanan A. A. Taie
- Department
of Plant Biochemistry, Agriculture and Biological Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
| | - Ahmed H. Bakheit
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A. E. Mostafa
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed Marzouk
- Chemistry
of Tanning Materials and Leather Technology Department, Chemical Industries
Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir
St.), Dokki, Cairo 12622, Egypt
| | - Harunor Rashid
- National
Centre for Immunisation Research and Surveillance (NCIRS), Kids Research
at The Children’s Hospital, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rashad Al-Salahi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|