1
|
Eizaguirre JI, Bruzone C, Duhourq I, Libkind D, Aguilar PS. [Incidence of beer spoilage microorganisms in Buenos Aires microbreweries]. Rev Argent Microbiol 2024:S0325-7541(24)00121-4. [PMID: 39537521 DOI: 10.1016/j.ram.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial contaminations pose a significant concern within the brewing industry, exerting negative effects on the organoleptic quality of the product and leading to substantial economic losses. The exponential proliferation of craft breweries in Argentina in recent years has heightened the demand for constant improvements in processes to ensure excellence in beer production. However, the stringency of microbiological quality controls remains a vulnerable area. This study assesses the prevalence of beer contaminants in samples from 10 breweries located in Buenos Aires City (CABA) and Greater Buenos Aires area (GBA). The results revealed the presence of microorganisms in 70% of the analyzed samples. Fifteen bacteria and 19 yeasts were successfully isolated, with bacteria belonging to the genera Acetobacter and Staphylococcus, and yeasts to the genera Saccharomyces, Lodderomyces, Candida, and Pichia. Accurately identifying these microorganisms provides producers with the necessary information for formulating action plans to improve cleaning and sanitization protocols in their facilities. This proactive approach not only has the potential to mitigate economic losses associated with microbial contamination but also contributes to maintaining and elevating quality standards in regional craft beer production.
Collapse
Affiliation(s)
- Juan I Eizaguirre
- Laboratorio de Biología Celular de Membranas (LBCM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), FCEN-UBA, CABA, Argentina.
| | - Clara Bruzone
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Argentina
| | - Ignacio Duhourq
- Laboratorio de Biología Celular de Membranas (LBCM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), FCEN-UBA, CABA, Argentina
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Argentina
| | - Pablo S Aguilar
- Laboratorio de Biología Celular de Membranas (LBCM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), FCEN-UBA, CABA, Argentina
| |
Collapse
|
2
|
Roselli GE, Kerruish DWM, Crow M, Smart KA, Powell CD. The two faces of microorganisms in traditional brewing and the implications for no- and low-alcohol beers. Front Microbiol 2024; 15:1346724. [PMID: 38440137 PMCID: PMC10910910 DOI: 10.3389/fmicb.2024.1346724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
The production of alcoholic beverages is intrinsically linked to microbial activity. This is because microbes such as yeast are associated with the production of ethanol and key sensorial compounds that produce desirable qualities in fermented products. However, the brewing industry and other related sectors face a step-change in practice, primarily due to the growth in sales of no- and low-alcohol (NoLo) alternatives to traditional alcoholic products. Here we review the involvement of microbes across the brewing process, including both their positive contributions and their negative (spoilage) effects. We also discuss the opportunities for exploiting microbes for NoLo beer production, as well as the spoilage risks associated with these products. For the latter, we highlight differences in composition and process conditions between traditional and NoLo beers and discuss how these may impact the microbial ecosystem of each product stream in relation to microbiological stability and final beer quality.
Collapse
Affiliation(s)
- Giulia E. Roselli
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | | | - Matthew Crow
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Katherine A. Smart
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Chris D. Powell
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
3
|
Xolo T, Keyser Z, A Jideani V. Physicochemical and microbiological changes during two-stage fermentation production of umqombothi. Heliyon 2024; 10:e24522. [PMID: 38268824 PMCID: PMC10803943 DOI: 10.1016/j.heliyon.2024.e24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Umqombothi is a traditional South African fermented beverage. The brewing process limits its consumption to a day or two after production due to the constant production of carbon dioxide. In this study the physicochemical and microbial changes in Umqombothi produced at two-stage fermentation temperatures [U1 (30-30 °C), U2 (30-25 °C), U3 (25-30 °C)] were studied over 52 h. Samples were collected before first fermentation (BFF), after first fermentation (AFF), before second fermentation (BSF), after second fermentation (ASF) and after final product (FP). For all three fermentation temperatures, there was a significant increase (p < 0.05) in microbial counts and a significant drop in pH following fermentation stages (AFF and ASF), with a considerable decrease in total soluble solids (TSS) after ASF. The total viable count (TVC), lactic acid bacteria (LAB), yeast, and mould were not detected in the BSF samples for all three fermentation temperatures. The LAB count was significantly (p < 0.05) different at 5.18, 5.36 and 5.25 log CFU/mL for U1, U2 and U3, respectively. The pH was 3.96, 4.12 and 4.34 for U1, U2 and U3, respectively, and was significantly (p < 0.05) different. Total soluble solids significantly (p < 0.05) increased at the BSF at all temperatures. There was no significant (p > 0.05) difference in specific gravity and ethanol content of Umqombothi at all fermentation temperatures. At all fermentation temperatures, Umqombothi was characterised by redness and yellowness, with that collected from U1 being the lightest in colour (L* = 71.24). Colour difference (ΔE) in the between of 4-8 was perceivable but acceptable as they had a ΔE value of 3.58, 2.07 and 2.02 for U1-U2, U1-U3 and U2-U3 respectively. Umqombothi produced at 30 °C for first and second fermentation (U1) was the most preferred by the consumer panellist and consequently, the best fermentation temperature to produce Umqombothi.
Collapse
Affiliation(s)
- Thembelani Xolo
- Department of Food Science and Technology, Cape University of Technology, Bellville Campus (Main), Symphony Road, 7530, South Africa
| | - Zanephyn Keyser
- Department of Food Science and Technology, Cape University of Technology, Bellville Campus (Main), Symphony Road, 7530, South Africa
| | - Victoria A Jideani
- Department of Food Science and Technology, Cape University of Technology, Bellville Campus (Main), Symphony Road, 7530, South Africa
| |
Collapse
|
4
|
Díaz AB, Durán-Guerrero E, Valiente S, Castro R, Lasanta C. Development and Characterization of Probiotic Beers with Saccharomyces boulardii as an Alternative to Conventional Brewer's Yeast. Foods 2023; 12:2912. [PMID: 37569181 PMCID: PMC10418778 DOI: 10.3390/foods12152912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The development of new non-dairy probiotic foods is interesting, given lactose intolerance, milk allergies, and the growing trend of vegetarianism. In this paper, beer has been used as a probiotic delivery matrix, using Saccharomyces boulardii as an alternative to conventional brewer's yeast. The strain was able to grow in worts prepared with hops containing different alpha-acid concentrations, attaining in all cases a final cell concentration above 1·108 cells mL-1. Some differences were found in the physicochemical parameters of beers brewed with S. boulardii compared to those brewed with a standard brewer's yeast. Probiotic beers turned out to be less cloudy, which could help with a possible filtering step; less alcoholic in some cases; a healthier alternative; and with a slightly lower pH, interesting for the reduction of spoilage risk. Thirty volatile compounds were determined in the samples, and, in general, the beers brewed with the probiotic yeast presented significantly higher concentrations for the majority of the studied volatile compounds. In addition, multivariate statistical analysis was successfully performed to differentiate the beers obtained in terms of their volatile composition. Probiotic and standard beers were also subjected to sensory analysis, and they presented similar results in their overall impression.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Sergio Valiente
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| |
Collapse
|
5
|
Dziedziński M, Stachowiak B, Kobus-Cisowska J, Kozłowski R, Stuper-Szablewska K, Szambelan K, Górna B. Supplementation of beer with Pinus sylvestris L. shoots extracts and its effect on fermentation, phenolic content, antioxidant activity and sensory profiles. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Praia AB, Herkenhoff ME, Broedel O, Frohme M, Saad SMI. Sour Beer with Lacticaseibacillus paracasei subsp. paracasei F19: Feasibility and Influence of Supplementation with Spondias mombin L. Juice and/or By-Product. Foods 2022; 11:foods11244068. [PMID: 36553809 PMCID: PMC9778371 DOI: 10.3390/foods11244068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the probiotic strain Lacticaseibacillus (L.) paracasei subsp. paracasei F19 (F19) with the yeast Saccharomyces cerevisiae US-05 (US-05), using Spondias mombin L. ('taperebá' or 'cajá') juice and by-product, in four sour-type beer formulations: control, with bagasse, juice, and juice and bagasse. The viability of F19 was evaluated by pour-plating and PMA-qPCR. Fermentability, in addition to physicochemical and sensory parameters, and aroma and flavor, were evaluated during brewery by using Headspace Solid-Phase Microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). F19 was successful in fermenting bagasse in a MRS medium (9.28 log CFU/mL in 24 h) but had a low viability in hopped wort, growing better in formulations without bagasse or juice. No difference between formulations was observed regarding sensory acceptability, and the HS-SPME/GC-MS revealed different flavors and aroma compounds. In conclusion, the production of a potential probiotic sour beer with F19 and US-05 is feasible regarding probiotic viability. However, S. mombin, as juice or bagasse, threatened probiotic survival. Different flavors and aroma compounds were detected, whereas no difference between formulations was found regarding sensory acceptability. The moderate alcohol content achieved is important for bacterial survival and for the development of a probiotic beer with health claims.
Collapse
Affiliation(s)
- Ana Beatriz Praia
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Correspondence:
| |
Collapse
|
7
|
Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer. Foods 2022; 11:foods11182787. [PMID: 36140918 PMCID: PMC9497594 DOI: 10.3390/foods11182787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
During the last few years, consumer demand has been increasingly oriented to fermented foods with functional properties. This work proposed to use selected non-conventional yeasts (NCY) Lachanceathermotolerans and Kazachstaniaunispora in pure and mixed fermentation to produce craft beer fortified with hydrolyzed red lentils (HRL). For this, fermentation trials using pils wort (PW) and pils wort added with HRL (PWL) were carried out. HRL in pils wort improved the fermentation kinetics both in mixed and pure fermentations without negatively affecting the main analytical characters. The addition of HRL determined a generalized increase in amino acids concentration in PW. L. thermotolerans and K. unispora affected the amino acid profile of beers (with and without adding HRL). The analysis of by-products and volatile compounds in PW trials revealed a significant increase of some higher alcohols with L. thermotolerans and ethyl butyrate with K. unispora. In PWL, the two NCY showed a different behavior: an increment of ethyl acetate (K. unispora) and β-phenyl ethanol (L. thermotolerans). Sensory analysis showed that the presence of HRL characterized all beers, increasing the perception of the fruity aroma in both pure and mixed fermentation.
Collapse
|
9
|
Dusart A, Ryckaert JP, Collin S. Comparative Investigation of Flavors in Red and Brown Flemish Beers: Key-Role of Brettanomyces and Torrefied Malts in Ethylphenols Occurrence. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Alexandre Dusart
- Unit of Brewery and Food Sciences, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Paul Ryckaert
- Unit of Brewery and Food Sciences, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unit of Brewery and Food Sciences, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Bouchez A, De Vuyst L. Acetic Acid Bacteria in Sour Beer Production: Friend or Foe? Front Microbiol 2022; 13:957167. [PMID: 35992674 PMCID: PMC9386357 DOI: 10.3389/fmicb.2022.957167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Beer is the result of a multistep brewing process, including a fermentation step using in general one specific yeast strain. Bacterial presence during beer production (or presence in the beer itself) is considered as bad, since bacteria cause spoilage, produce off-flavors, and/or turbidity. Although most problems in the past related to lack of hygiene and/or cleaning, bacteria do still cause problems nowadays. Despite this negative imago, certain bacteria play an irreplaceable role during fermentation and/or maturation of more unique, funky, and especially refreshing sour beers. The term sour beers or sours is not restricted to one definition but covers a wide variety of beers produced via different techniques. This review proposes an uncluttered sour beer classification scheme, which includes all sour beer production techniques and pays special attention to the functional role of acetic acid bacteria. Whereas their oxidation of ethanol and lactate into acetic acid and acetoin usually spoils beer, including sour beers, organoleptically, a controlled growth leads to a desirable acidic flavor in sour beers, such as lambic-style, lambic-based, and red-brown acidic ales.
Collapse
|
11
|
Hayashi N, Arai R, Minato T, Fujita Y. Factorial Analysis of Variance of the Inhibiting Effects of Iso-Alpha Acids, Alpha Acids, and Sulfur Dioxide on the Growth of Beer-Spoilage Bacteria in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2093091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobuyuki Hayashi
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Ritsuko Arai
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Toshiko Minato
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Yasuhiro Fujita
- Institute for Future Beverages, Kirin Holdings Company, Limited, Yokohama, Japan
| |
Collapse
|
12
|
Romero-Rodríguez R, Durán-Guerrero E, Castro R, Díaz AB, Lasanta C. Evaluation of the Influence of the Microorganisms Involved in the Production of Beers on their Sensory Characteristics. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Boro N, Narzary D. Amylolytic Fungi in the Ethnic Beer Starter “emao” and Their Beer-Producing Attributes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.869430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Naturally occurring autochthonous microbes associated with ethnic beer starters are diverse and important as they play different functional roles in beer fermentations. The study on culturable microbes from the ethnic rice beer starter “emao” of the Bodo community of Assam is limited. Here we isolated and identified the culturable fungal diversity associated with emao and screened them for beer-producing capability from glucose and starch substrates. Based on morphology and molecular characterization, the species identified were Candida glabrata (Cgla_RF2), Cyberlindnera fabianii (Cfab_RF37), Hyphopichia burtonii (Hbur_RF19), Mucor circinelloides (Mcir_RF48), Mucor indicus (Mind_RF25), Penicillium citrinum (Pcit_RF32), Rhodosporidiobolus ruineniae (Rrui_RF4 & Rrui_RF43), Saccharomyces cerevisiae (Scer_RF6), Saccharomycopsis fibuligera (Sfib_RF11), and Wickerhamomyces anomalus (Wano_RF3) among which the relative abundance (RA) of W. anomalus was the highest (24%) followed by C. glabrata and H. burtonii (16% in each). Five (Hbur_RF19, Sfib_RF11, Mind_RF25, Mcir_RF48, and Pcit_RF32) of eleven isolates showed amylase positive in the starch medium. Scer_RF6 showed the highest ethanol tolerance (14% v/v) followed by Hbur_RF19 (12% v/v), Cgla_RF2 (11% v/v) and Wano_RF3 (11% v/v). The amylase-positive strains produced beer-containing ethanol in the range of 3.17–7.3 (% v/v) from rice substrate. Although the rice beer produced by amylase-positive strains showed negligible pH difference, other parameters like ethanol, ascorbic acid, total phenol, and antioxidant properties were varied from beer to beer. Antibacterial activities shown by Mcir_RF48 and Pcit_RF32 against the test bacteria were higher with a 23–35 mm zone of inhibition than the other isolates. The present findings reveal the presence of fungi with antibacterial, amylolytic, ethanol fermenting, and antioxidant producing capacity in emao which could the source for future bioprospection.
Collapse
|
14
|
Drosou F, Anastasakou K, Tataridis P, Dourtoglou V, Oreopoulou V. Evaluation of Commercial Strains of Torulaspora delbrueckii in Beer Production. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2025327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fotini Drosou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Katerina Anastasakou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Panagiotis Tataridis
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Vassilis Dourtoglou
- Department of Department of Wine, Vine and Beverage Sciences, University of West Attica Egaleo, Athens, Greece
| | - Vassiliki Oreopoulou
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
15
|
Kordialik-Bogacka E. Biopreservation of beer: Potential and constraints. Biotechnol Adv 2022; 58:107910. [PMID: 35038561 DOI: 10.1016/j.biotechadv.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
The biopreservation of beer, using only antimicrobial agents of natural origin to ensure microbiological stability, is of great scientific and commercial interest. This review article highlights progress in the biological preservation of beer. It describes the antimicrobial properties of beer components and microbiological spoilage risks. It discusses novel biological methods for enhancing beer stability, using natural antimicrobials from microorganisms, plants, and animals to preserve beer, including legal restrictions. The future of beer preservation will involve the skilled knowledge-based exploitation of naturally occurring components in beer, supplementation with generally regarded as safe antimicrobial additives, and mild physical treatments.
Collapse
Affiliation(s)
- Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-530 Lodz, Poland.
| |
Collapse
|
16
|
Abstract
Food allergies are an important global health concern, with many countries following the World Health Organisation’s guidelines with regards to due labelling of foods and, as such, providing forewarning about the presence of potential allergens to potential consumers. While for some produce, the link to specific allergens might be very clear to most consumers, this is not the case for all produce. People with specific food-related allergies usually know what to look out for, but occasionally, unexpected allergens are present in trusted produce. Beer is known to most to contain barley, which will contain gluten-like proteins that can cause allergic reactions in some people. Similarly, beer might contain sulphites and other potential allergens traditionally associated with beers. This review aims to examine a wide range of allergens that have entered the beer production process in recent years. As a result, examples of beers that contain one or more of the 14 EU-UK listed allergens are described, different allergen regulations in different countries are emphasised and their impact explained, and a number of case studies involving allergic reactions following exposure to and the ingestion of beer are highlighted.
Collapse
|
17
|
Experimental Whisky Fermentations: Influence of Wort Pretreatments. Foods 2021; 10:foods10112755. [PMID: 34829036 PMCID: PMC8624260 DOI: 10.3390/foods10112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
In addition to ethanol yield, the production of flavour congeners during fermentation is a major consideration for Scotch whisky producers. Experimental whisky fermentations can provide useful information to the industry, and this is the focus of this paper. This study investigated the impact of wort pretreatments (boiled, autoclaved, filtered) on fermentation performance and flavour development in Scotch whisky distillates as an alternative to freezing wort for storage. Our study showed that no significant sensorial differences were detected in low wines (first distillates), while the chemical compositions showed clear changes in increased levels of esters and higher alcohols in boiled and autoclaved wort. In contrast, filtered wort comprised overall lower levels of congeners. Regarding alcohol yield, all three pretreatments resulted in decreased yields. In practice, the pretreatment of wort prior to fermentation requires additional process operations, while freezing requires large storage units. The pretreatments adopted in this study significantly influence the composition of the malt wort used for experimental whisky fermentations, and this results in a poorer fermentation performance compared with untreated wort. We recommend the use of fresh or frozen wort as the best options for small-scale fermentation trials.
Collapse
|
18
|
Yu Z, Fu W, Fu Y, Tang W, Li R, Li X. The biogenic amine-producing bacteria from craft beer and their kinetic analysis between growth characteristics and biogenic amine formation in beer. J Food Sci 2021; 86:4991-5003. [PMID: 34699076 DOI: 10.1111/1750-3841.15934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Craft beer because of its fresh flavor, unique taste, and rich nutrition is becoming more popular to consumers. Compared with industry beer, craft beer is often nonfiltered and nonpasteurized, for this reason, it has a short shelf life and is more susceptible to microbial spoilage, which may cause the quality deterioration of craft beer and the formation of biogenic amine as a harmful factor for consumer's health. In this study, the 23 beer-spoilage bacteria were isolated from craft beer, which were identified as 15 Lactobacillus (L.) brevis, 3 L. plantarum, 1 L. parabuchneri, 2 L. paracasei, and 2 Pediococcus damnosus. Among 23 beer-spoilage isolates, 20 representatives were able to form tyramine, histamine, putrescine, cadaverine, and/or tryptamine in MRS broth. The nine Lactobacillus strains were incubated in beer and produced tyramine, histamine, putrescine, cadaverine, and/or tryptamine during beer storage process. Logistic and Gompertz model could be adopted to respectively describe the kinetics of microorganism growth and biogenic amine formation. The relationship between the biogenic amines and biomass was simulated by Luedeking-Piret model very well, and showed that the formation of biogenic amine was mainly bacteria growth-associated in beer. These findings may be helpful for finding the preventive measures to control biogenic amine formation and for enhancing the safety of craft beer. PRACTICAL APPLICATION: The selection of the biogenic amine-producing spoilage bacteria from craft beer and the investigation their kinetics of the growth and biogenic amines production under beer environmental conditions was very helpful for finding preventive measures to eliminate or reduce biogenic amine formation and for appropriate increase in food safety.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Wei Fu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Yang Fu
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Wenzhu Tang
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Rong Li
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| | - Xianzhen Li
- School of Biotechnology Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
19
|
Quain DE. The enhanced susceptibility of alcohol‐free and low alcohol beers to microbiological spoilage: implications for draught dispense. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David E. Quain
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Loughborough Leicestershire LE12 5RD UK
| |
Collapse
|
20
|
Abstract
Mixed microbial cultures create sour beers but many brewers do not know which microbes comprise their cultures. The objective of this work was to use deep sequencing to identify microorganisms in sour beers brewed by spontaneous and non-spontaneous methods. Twenty samples were received from brewers, which were processed for microbiome analysis by next generation sequencing. For bacteria, primers were used to amplify the V3-V4 region of the 16S rRNA gene; fungal DNA detection was performed using primers to amplify the entire internal transcribed spacer region. The sequencing results were then used for taxonomy assignment, sample composition, and diversity analyses, as well as nucleotide BLAST searching. We identified 60 genera and 140 species of bacteria, of which the most prevalent were Lactobacillus acetotolerans, Pediococcus damnosus, and Ralstonia picketti/mannitolilytica. In fungal identification, 19 genera and 26 species were found, among which the most common yeasts were Brettanomyces bruxellensis and Saccharomyces cerevisiae. In some cases, genetic material from more than 60 microorganisms was found in a single sample. In conclusion, we were able to determine the microbiomes of various mixed cultures used to produce beer, providing useful information to better understand the sour beer fermentation process and brewing techniques.
Collapse
|
21
|
Torres-Guardado R, Esteve-Zarzoso B, Reguant C, Bordons A. Microbial interactions in alcoholic beverages. Int Microbiol 2021; 25:1-15. [PMID: 34347199 DOI: 10.1007/s10123-021-00200-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.
Collapse
Affiliation(s)
- Rafael Torres-Guardado
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Braulio Esteve-Zarzoso
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
22
|
Narzary D, Boro N, Borah A, Okubo T, Takami H. Community structure and metabolic potentials of the traditional rice beer starter 'emao'. Sci Rep 2021; 11:14628. [PMID: 34272462 PMCID: PMC8285430 DOI: 10.1038/s41598-021-94059-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
The emao, a traditional beer starter used in the North-East regions of India produces a high quality of beer from rice substrates; however, its microbial community structure and functional metabolic modules remain unknown. To address this gap, we have used shot-gun whole-metagenome sequencing technology; accordingly, we have detected several enzymes that are known to catalyze saccharification, lignocellulose degradation, and biofuel production indicating the presence of metabolic functionome in the emao. The abundance of eukaryotic microorganisms, specifically the members of Mucoromycota and Ascomycota, dominated over the prokaryotes in the emao compared to previous metagenomic studies on such traditional starters where the relative abundance of prokaryotes occurred higher than the eukaryotes. The family Rhizopodaceae (64.5%) and its genus Rhizopus (64%) were the most dominant ones, followed by Phaffomycetaceae (11.14%) and its genus Wickerhamomyces (10.03%). The family Leuconostocaceae (6.09%) represented by two genera (Leuconostoc and Weissella) was dominant over the other bacteria, and it was the third-highest in overall relative abundance in the emao. The comprehensive microbial species diversity, community structure, and metabolic modules found in the emao are of practical value in the formulation of mixed-microbial cultures for biofuel production from plant-based feedstocks.
Collapse
Affiliation(s)
- Diganta Narzary
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India.
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan.
| | - Nitesh Boro
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Ashis Borah
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Takashi Okubo
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Macrogen Japan Corp., 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hideto Takami
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
23
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
24
|
Dugulin CA, De Rouck G, Cook DJ. Green Malt for a Green Future – Feasibility and Challenges of Brewing Using Freshly Germinated (Unkilned) Malt: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1902710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Celina A. Dugulin
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| | - Gert De Rouck
- KU Leuven, Faculty of Engineering Technology, Department of Food and Microbial Technology (CLMT), Laboratory of Enzyme, Fermentation and Brewing Technology, Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - David J. Cook
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| |
Collapse
|
25
|
Calumba KF, Reyes V, Bonilla F, Villasmil E, Sathivel S. Ale beer containing free and immobilized Lactobacillus brevis, a potential delivery system for probiotics. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Probiotics in ale beer may be attractive to health-conscious consumers. However, beer conditions may decrease probiotic viability. Powder produced from durian (Durio zibethinus) rind, a by-product that is currently unutilized, can be used for the immobilization of probiotics. MRS medium was incubated with Lactobacillus brevis and periodically sampled to obtain the growth curve. Ale beer with free L. brevis and cells immobilized in durian rind powder was produced and separately assessed during storage at 21 °C for 24 days. The physico-chemical parameters of both beers did not differ significantly. Durian rind powder conferred protection up to 12 days of storage with the immobilized cells in the beer having a significantly higher count than the free cells, which can be due to the acid detergent fiber content (19.67%). Free and immobilized cells remained viable with counts of 4.89 and 5.00 log CFU/mL of beer, respectively, at the end of the storage period. Both treatments had approximate counts of 5 log CFU/mL after 120 min in simulated gastric and intestinal fluids. The predominant bacterial species present at the end of storage were L. brevis and L. farciminis. This study suggests that ale beer could be a potential delivery system for free and immobilized probiotic bacteria. This is one of the few studies demonstrating the use of probiotic lactic acid bacteria in beer brewing.
Graphical abstract
Collapse
|
26
|
Thomas K, Ironside K, Clark L, Bingle L. Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keith Thomas
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Kayleigh Ironside
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| | - Lisa Clark
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Lewis Bingle
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| |
Collapse
|
27
|
Takahashi M, Kita Y, Minakami R, Mukai N. Growth Characteristics of Bacillus cereus in Sake and during Its Manufacture. J Food Prot 2021; 84:213-219. [PMID: 32977335 DOI: 10.4315/jfp-20-196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Sake (Japanese rice wine) has been recognized as being low risk in terms of its microbiological safety. However, a confirmation of the food safety aspects of sake based on scientific evidence is important for establishing consumer confidence, in part because consumer concerns regarding food safety have increased. The presence of Bacillus cereus spores in refined rice wine has been reported, and in light of consumers' growing concern over food safety, the establishment of food and beverage safety is important for consumers' reassurance. Herein, to confirm the microbiological safety of sake, we investigated the content and growth of B. cereus. We conducted a spore addition test to determine whether B. cereus spores grow during sake production, and we observed no growth or germination of B. cereus spores during the manufacturing process. We also observed that processes such as solid-liquid separation and filtration help remove the risk posed by B. cereus. We then conducted a survey to assess the density of B. cereus in various commercial sake products. We analyzed 162 samples of commercial sake and observed that 11 of the products had ≥1 CFU of living cells in 1 mL of sake (detection rate, 6.8%). There was no product in which ≥100 CFU of living cells per 1 mL of sake was detected. Our findings confirmed that the density of these bacteria in sake is lower than that in other foods and that the probability of infection is very low. The emetic toxin produced by B. cereus was not detected in any of the sake samples. This is the first study based on experimental data demonstrating that B. cereus is not able to grow in sake or during the sake manufacturing process. We, thus, conclude that the safety risk of B. cereus in sake is negligible. Our findings indicating that B. cereus is not a significant hazard in the sake brewing process will contribute to food hygiene management based on scientific evidence in sake breweries. HIGHLIGHTS
Collapse
Affiliation(s)
- Masayuki Takahashi
- National Research Institute of Brewing (NRIB), Higashi-hiroshima 739-0046, Hiroshima, Japan
| | - Yasuko Kita
- National Research Institute of Brewing (NRIB), Higashi-hiroshima 739-0046, Hiroshima, Japan
| | - Rui Minakami
- National Research Institute of Brewing (NRIB), Higashi-hiroshima 739-0046, Hiroshima, Japan
| | - Nobuhiko Mukai
- National Research Institute of Brewing (NRIB), Higashi-hiroshima 739-0046, Hiroshima, Japan
| |
Collapse
|
28
|
Rodríguez-Saavedra M, González de Llano D, Beltran G, Torija MJ, Moreno-Arribas MV. Pectinatus spp. - Unpleasant and recurrent brewing spoilage bacteria. Int J Food Microbiol 2020; 336:108900. [PMID: 33129006 DOI: 10.1016/j.ijfoodmicro.2020.108900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Traditionally, beer has been recognised as a beverage with high microbiological stability because of the hostile growth environment posed by beer and increasing attention being paid to brewery hygiene. However, the microbiological risk has increased in recent years because of technological advances toward reducing oxygen in beers, besides the increase in novel beer styles production, such as non-pasteurised, flash pasteurised, cold sterilised, mid-strength, and alcoholic-free beer, that are more prone to spoilage bacteria. Moreover, using innovative beer ingredients like fruits and vegetables is an added cause of microbial spoilage. To maintain quality and good brand image, beer spoilage microorganisms are a critical concern for breweries worldwide. Pectinatus and Megasphaera are Gram-negative bacteria mostly found in improper brewing environments, leading to consumer complaints and financial losses. Because of the lack of compiled scientific knowledge on Pectinatus spoilage ability, this review provides a comprehensive overview of the occurrence, survival mechanisms, and the factors affecting beer spoilage Pectinatus species in the brewing process.
Collapse
Affiliation(s)
- Magaly Rodríguez-Saavedra
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Dolores González de Llano
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain.
| |
Collapse
|
29
|
Pre-fermentation of malt whisky wort using Lactobacillus plantarum and its influence on new-make spirit character. Food Chem 2020; 320:126605. [PMID: 32229395 DOI: 10.1016/j.foodchem.2020.126605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
Abstract
Distillery fermentations are non-sterile, which allow bacterial communities to flourish, typically towards the end of fermentation. The effect of beginning the bacterial fermentation at the start of fermentation was investigated. Wort was treated for 48 h using a commercial strain of Lactobacillus plantarum followed by fermentation using a distilling strain of Saccharomyces cerevisiae. The treated wash showed a substantial increase in lactic, acetic and succinic acids Sensory analysis determined that the spirit produced with bacterial treatment were significantly different (p < 0.05) and chemical analysis demonstrated an increase in the production of ethyl acetate. These results show that pre-treatment using species of Lactobacillus could be utilised to alter the quality of new-make spirit in a distillery. By using bacterial cultures present in the surroundings or raw materials, distillers could allow naturally occurring or commercially available microflora to be added thus enhancing flavour development during fermentation and producing different spirit characters.
Collapse
|
30
|
Abstract
Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.
Collapse
|
31
|
Choi EJ, Park JW, Kim JH, Kim WJ. Biological acidification and beer quality: addition of lactic acid bacteria isolated from malt. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eun-Ji Choi
- Department of Food Science and Biotechnology; College of Life Science and Biotechnology; Dongguk University, 32 Dongguk-ro, Ilsandong-gu Goyang-si Republic of Korea
| | - Ji-Won Park
- Department of Food Science and Biotechnology; College of Life Science and Biotechnology; Dongguk University, 32 Dongguk-ro, Ilsandong-gu Goyang-si Republic of Korea
| | - Ji Hyeon Kim
- Department of Food Science and Biotechnology; College of Life Science and Biotechnology; Dongguk University, 32 Dongguk-ro, Ilsandong-gu Goyang-si Republic of Korea
| | - Wang June Kim
- Department of Food Science and Biotechnology; College of Life Science and Biotechnology; Dongguk University, 32 Dongguk-ro, Ilsandong-gu Goyang-si Republic of Korea
| |
Collapse
|
32
|
Goodman M, Neal JA, Corsi A, Sirsat SA. Isolation of Beer-Spoiling Bacteria from Texas Craft Breweries. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2020. [DOI: 10.1080/15428052.2018.1509754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mary Goodman
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, Texas, USA
| | - Jack A. Neal
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, Texas, USA
| | - Aaron Corsi
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, Texas, USA
| | - Sujata A. Sirsat
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Dysvik A, La Rosa SL, Liland KH, Myhrer KS, Østlie HM, De Rouck G, Rukke EO, Westereng B, Wicklund T. Co-fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front Microbiol 2020; 11:279. [PMID: 32153550 PMCID: PMC7048013 DOI: 10.3389/fmicb.2020.00279] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of Saccharomyces cerevisiae in co-fermentation with Lactobacillus species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol. Here, we evaluated the tolerance of Lactobacillus brevis BSO464 and Lactobacillus buchneri CD034 to beer conditions and different fermentation strategies as well as their use in the brewing process in mixed fermentation with a brewer's yeast, S. cerevisiae US-05. Results were compared with those obtained with a commercial Lactobacillus plantarum (WildBrewTM Sour Pitch), a strain commonly used for kettle souring. In pure cultures, the three strains showed varying susceptibility to stresses, with L. brevis being the most resistant and L. plantarum displaying the lowest stress tolerance. When in co-fermentation with S. cerevisiae, both L. plantarum and L. brevis were able to generate sour beer in as little as 21 days, and their presence positively influenced the composition of flavor-active compounds. Both sour beers were sensorially different from each other and from a reference beer fermented by S. cerevisiae alone. While the beer produced with L. plantarum had an increased intensity in fruity odor and dried fruit odor, the L. brevis beer had a higher total flavor intensity, acidic taste and astringency. Remarkably, the beer generated with L. brevis was perceived as comparable to a commercial sour beer in multiple sensory attributes. Taken together, this study demonstrates the feasibility of using L. brevis BSO464 and L. plantarum in co-fermentation with S. cerevisiae for controlled sour beer production with shortened production time.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine S. Myhrer
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Gert De Rouck
- Faculty of Engineering Technology, KU Leuven, Ghent, Belgium
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
34
|
Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020; 8:microorganisms8020274. [PMID: 32085437 PMCID: PMC7074673 DOI: 10.3390/microorganisms8020274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.
Collapse
|
35
|
Lodolo EJ. Sustainability through Management of Water, Process and Product Hygiene on Food and Beverage Sites. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1683707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elizabeth J. Lodolo
- Next Renewable Generation (Pty) Ltd, Rosebank, South Africa
- Department of Microbial, Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| |
Collapse
|
36
|
Abstract
Non-alcoholic beer (NAB) is enjoying growing demand and popularity due to consumer lifestyle trends and improved production methods. In recent years in particular, research into the application of non-Saccharomyces yeasts to produce NAB via limited fermentation has gained momentum. Non-Saccharomyces yeasts are known to produce fruity aromas, owing to a high ester production. This trait could be harnessed to mask the often-criticized wort-like off-flavor of NAB produced via limited fermentation. Six Cyberlindnera strains were characterized and screened in wort extract. Four of the six strains produced a pleasant, fruity aroma while exhibiting low ethanol production. The strain Cyberlindnera subsufficiens C6.1 was chosen for fermentation optimization via response surface methodology (RSM) and a pilot-scale (60 L) brewing trial with subsequent sensory evaluation. A low fermentation temperature and low pitching rate enhanced the fruitiness and overall acceptance of the NAB. The NAB (0.36% ABV) produced on pilot-scale was significantly more fruity and exhibited a significantly reduced wort-like off-flavor compared to two commercial NABs. This study demonstrated the suitability of Cyberlindnera subsufficiens to produce a fruity NAB, which can compete with commercial NABs. The outcome strengthens the position of non-Saccharomyces yeasts as a serious and applicable alternative to established methods in NAB brewing.
Collapse
|
37
|
Yu Z, Luo Q, Xiao L, Sun Y, Li R, Sun Z, Li X. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality. Food Sci Nutr 2019; 7:3950-3957. [PMID: 31890173 PMCID: PMC6924307 DOI: 10.1002/fsn3.1256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023] Open
Abstract
To meet demands for fresh flavor and unique taste from beer consumer, there is an increase in the popularity of craft beer, which is more susceptible to microbial contamination than the industry beer. A beer-spoilage strain was isolated from craft beer and identified as Staphylococcus xylosus strain BS7. The isolate BS7 showed that high beer-spoilage ability at low temperature (4°C), low pH (4.0) and high ethanol concentration (7.0%, v/v). Compared with the other known strains of S. xylosus, strain BS7 was resistant to hop compounds and had an evolutionary stability in hop resistance. Strain BS7 was able to grow quickly and utilizes nutrients in commercial beer, produces organic acids and biogenic amines, and changes beer flavor profile. These results suggest that S. xylosus strain BS7 is a beer-spoilage strain with the danger, which can lead to the beer-spoilage issues during craft beer production.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Qiuying Luo
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Li Xiao
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Yumei Sun
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Rong Li
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Zhen Sun
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Xianzhen Li
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| |
Collapse
|
38
|
Bellut K, Michel M, Zarnkow M, Hutzler M, Jacob F, Lynch KM, Arendt EK. On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03372-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Bellut K, Michel M, Hutzler M, Zarnkow M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK. Investigation into the Potential ofLachancea fermentatiStrain KBI 12.1 for Low Alcohol Beer Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1629227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Konstantin Bellut
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Maximilian Michel
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | - Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Dysvik A, Liland KH, Myhrer KS, Westereng B, Rukke EO, de Rouck G, Wicklund T. Pre-fermentation with lactic acid bacteria in sour beer production. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Ås Norway
| | - Kristine S. Myhrer
- NOFIMA - Norwegian Institute of Food, Fisheries and Aquaculture Research; PB 210 N-1431 Ås Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Gert de Rouck
- Faculty of Engineering Technology; KU Leuven Technology campus Gent; Gebroeders De Smetstraat 1 B9000 Ghent Belgium
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| |
Collapse
|
41
|
Condina MR, Dilmetz BA, Razavi Bazaz S, Meneses J, Ebrahimi Warkiani M, Hoffmann P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. LAB ON A CHIP 2019; 19:1961-1970. [PMID: 31099359 DOI: 10.1039/c9lc00152b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), in combination with Biotyper software, is a rapid, high-throughput, and accurate method for the identification of microbes. Microbial outbreaks in a brewery present a major risk for companies as it can lead to cost-intensive recalls and damage to the brand reputation. MALDI-TOF MS has been implemented into a brewery setting for quality control practices and the identification of beer spoilage microorganisms. However, the applicability of this approach is hindered by compatibility issues associated with mixed cultures, requiring the use of time-consuming selective cultivation techniques prior to identification. We propose a novel, low-cost approach based on the combination of inertial microfluidics and secondary flows in a spiral microchannel for high-throughput and efficient separation of yeasts (Saccharomyces pastorianus and Saccharomyces cerevisiae) from beer spoilage microorganisms (Lactobacillus brevis and Pediococcus damnosus). Flow rates were optimised using S. pastorianus and L. brevis, leading to separation of more than 90% of the L. brevis cells from yeast. The microorganisms were then identified to the species level using the MALDI-TOF MS platform using standard sample preparation protocols. This study shows the high-throughput and rapid separation of spoilage microorganisms (0.3-3 μm) from background yeast (5 μm) from beer, subsequent identification using MALDI Biotyper, and the potential applicability of the approach for biological control in the brewing industry.
Collapse
Affiliation(s)
- Mark R Condina
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - Brooke A Dilmetz
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Australia.
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Australia. and Institute of Molecular Medicine, Sechenov University, Moscow 119991, Russia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| |
Collapse
|
42
|
Baltaci SF, Hamamci H. The simultaneous saccharification and fermentation of malt dust and use in the acidification of mash. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saadet Fatma Baltaci
- Department of Food Engineering; Middle East Technical University; Ankara Turkey
- H2Biyotek, METU Technopolis, MET Area, Cankaya; Ankara Turkey
| | - Haluk Hamamci
- Department of Food Engineering; Middle East Technical University; Ankara Turkey
- H2Biyotek, METU Technopolis, MET Area, Cankaya; Ankara Turkey
| |
Collapse
|
43
|
De Roos J, De Vuyst L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:25-38. [PMID: 30246252 DOI: 10.1002/jsfa.9291] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Acidic beers, such as Belgian lambic beers and American and other coolship ales, are becoming increasingly popular worldwide thanks to their refreshing acidity and fruity notes. The traditional fermentation used to produce them does not apply pure yeast cultures but relies on spontaneous, environmental inoculation. The fermentation and maturation process is carried out in wooden barrels and can take up to three years. It is characterized by different microbial species belonging to the enterobacteria, acetic acid bacteria, lactic acid bacteria, and yeasts. This review provides an introduction to the technology and four fermentation strategies of beer production, followed by the microbiology of acidic beer production, focusing on the main microorganisms present during the long process used for the production of Belgian lambic beers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
44
|
|
45
|
Rachon G, Rice CJ, Pawlowsky K, Raleigh CP. Challenging the assumptions around the pasteurisation requirements of beer spoilage bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Grzegorz Rachon
- Campden BRI, Centenary Hall; Coopers Hill Road, Nutfield Surrey RH1 4HY UK
| | | | - Karin Pawlowsky
- Campden BRI, Centenary Hall; Coopers Hill Road, Nutfield Surrey RH1 4HY UK
| | | |
Collapse
|
46
|
Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4030066] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol-free beer (AFB) is no longer just a niche product in the beer market. For brewers, this product category offers economic benefits in the form of a growing market and often a lower tax burden and enables brewers to extend their product portfolio and promote responsible drinking. Non-Saccharomyces yeasts are known for their flavor-enhancing properties in food fermentations, and their prevailing inability to ferment maltose and maltotriose sets a natural fermentation limit and can introduce a promising approach in the production of AFB (≤0.5% v/v). Five strains isolated from kombucha, Hanseniaspora valbyensis, Hanseniaspora vineae, Torulaspora delbrueckii, Zygosaccharomyces bailii and Zygosaccharomyces kombuchaensis were compared to a commercially applied AFB strain Saccharomycodes ludwigii and a Saccharomyces cerevisiae brewer’s yeast. The strains were characterized for their sugar utilization, phenolic off-flavors, hop sensitivity and flocculation. Trial fermentations were analyzed for extract reduction, ethanol formation, pH drop and final beers were analyzed for amino acids utilization and fermentation by-products. The performance of non-Saccharomyces strains and the commercial AFB strain were comparable during fermentation and production of fermentation by-products. An experienced sensory panel could not discriminate between the non-Saccharomyces AFB and the one produced with the commercial AFB strain, therefore indicating their suitability in AFB brewing.
Collapse
|
47
|
Toh DWK, Chua JY, Liu SQ. Impact of simultaneous fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii on volatile and non-volatile constituents in beer. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Brewing Microbiology - Bacteria of the Genera Bacillus, Brevibacillus and Paenibacillus and Cultivation Methods for their Detection - Part 1. KVASNY PRUMYSL 2018. [DOI: 10.18832/kp201813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Alternative Methods for Shelf Life Extension of Unfiltered Beers from Microbreweries. KVASNY PRUMYSL 2017. [DOI: 10.18832/kp201729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Rodhouse L, Carbonero F. Overview of craft brewing specificities and potentially associated microbiota. Crit Rev Food Sci Nutr 2017; 59:462-473. [PMID: 28910550 DOI: 10.1080/10408398.2017.1378616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The brewing process differs slightly in craft breweries as compared to industrial breweries, as there are fewer control points. This affects the microbiota of the final product. Beer contains several antimicrobial properties that protect it from pathogens, such as low pH, low oxygen and high carbon dioxide content, and the addition of hops. However, these hurdles have limited power controlling spoilage organisms. Contamination by these organisms can originate in the raw materials, persist in the environment, and be introduced by using flavoring ingredients later in the process. Spoilage is a prominent issue in brewing, and can cause quality degradation resulting in consumer rejection and product waste. For example, lactic acid bacteria are predominately associated with producing a ropy texture and haze, along with producing diacetyl which gives the beer butter flavor notes. Other microorganisms may not affect flavor or aroma, but can retard fermentation by consuming nutrients needed by fermentation yeast. Quality control in craft breweries today relies on culturing methods to detect specific spoilage organisms. Using media can be beneficial for detecting the most common beer spoilers, such as Lactobacillus and Pediococci. However, these methods are time consuming with long incubation periods. Molecular methods such as community profiling or high throughput sequencing are better used for identifying entire populations of beer. These methods allow for detection, differentiation, and identification of taxa.
Collapse
Affiliation(s)
- Lindsey Rodhouse
- a Department of Food Science , University of Arkansas , Fayetteville , AR , USA
| | - Franck Carbonero
- a Department of Food Science , University of Arkansas , Fayetteville , AR , USA
| |
Collapse
|