1
|
Ortigoza-Escobar JD, Zamani M, Dorison N, Sadeghian S, Azizimalamiri R, Alvi JR, Sultan T, Galehdari H, Shariati G, Saberi A, Leeuwen L, Zifarelli G, Bauer P, d'Hardemare V, Doummar D, Roze E, Travaglini L, Nicita F, Ojea Ponce N, Zahraei SM, Alabdi L, Tamim A, Hashem MO, Ababneh F, Morrow MM, Curry C, Tam A, Ruedy J, Bhambhani V, Veith R, Strømme P, Efthymiou S, Alkuraya FS, Moreno-De-Luca A, Burglen L, Houlden H, Maroofian R. Biallelic ZBTB11 Variants: A Neurodevelopmental Condition with Progressive Complex Movement Disorders. Mov Disord 2024; 39:1624-1630. [PMID: 38899514 DOI: 10.1002/mds.29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biallelic ZBTB11 variants have previously been associated with an ultrarare subtype of autosomal recessive intellectual developmental disorder (MRT69). OBJECTIVE The aim was to provide insights into the clinical and genetic characteristics of ZBTB11-related disorders (ZBTB11-RD), with a particular emphasis on progressive complex movement abnormalities. METHODS Thirteen new and 16 previously reported affected individuals, ranging in age from 2 to 50 years, with biallelic ZBTB11 variants underwent clinical and genetic characterization. RESULTS All patients exhibited a range of neurodevelopmental phenotypes with varying severity, encompassing ocular and neurological features. Eleven new patients presented with complex abnormal movements, including ataxia, dystonia, myoclonus, stereotypies, and tremor, and 7 new patients exhibited cataracts. Deep brain stimulation was successful in treating 1 patient with generalized progressive dystonia. Our analysis revealed 13 novel variants. CONCLUSIONS This study provides additional insights into the clinical features and spectrum of ZBTB11-RD, highlighting the progressive nature of movement abnormalities in the background of neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Mina Zamani
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lisette Leeuwen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Vincent d'Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- AP-HP. Sorbonne Université, Service de Neuropédiatrie et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, FHU I2D2, Paris, France
| | - Emmanuel Roze
- Assistance Publique-Hôpitaux de Paris CHU Pitié-Salpêtrière DMU Neurosciences et Sorbonne Université, INSERM, CNRS, Institut du Cerveau, Paris, France
| | - Lorena Travaglini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS, Bambino Gesù Children's Hospital of Rome, Rome, Italy
| | - Núria Ojea Ponce
- Department of Statistics, Institut de Recerca Sant Joan de Déu Barcelona, Barcelona, Spain
| | | | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah Tamim
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Cynthia Curry
- Department of Pediatrics, Genetic Medicine, UCSF/Fresno, Fresno, California, USA
| | - Allison Tam
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jessica Ruedy
- Genetics Clinic, Children's MN, Minneapolis, Minnesota, USA
| | | | - Regan Veith
- Genetics Clinic, Children's MN, Minneapolis, Minnesota, USA
| | - Petter Strømme
- Division of Pediatrics and Adolescent Medicine, Oslo, University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet," Hôpital Trousseau, APHP, Sorbonne University, Paris, France
- Département de Génétique, APHP, Sorbonne University, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR, Paris, France
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
2
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Lee JK, Oh A. Combined Malonic and Methylmalonic Aciduria Diagnosed by Recurrent and Severe Infections Mimicking a Primary Immunodeficiency Disease: A Case Report. J Korean Med Sci 2023; 38:e387. [PMID: 37987109 PMCID: PMC10659923 DOI: 10.3346/jkms.2023.38.e387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023] Open
Abstract
Combined malonic and methylmalonic aciduria is a rare genetic disorder caused by ACSF3 biallelic variants that results in impaired protein and fat metabolism and the accumulation of malonic and methylmalonic acids. A 52-day-old infant with a fever and a history of possible meningitis during the neonatal period was hospitalized. Multiple lesions of necrotizing lymphadenitis with abscesses in the left inguinal area were treated by incision and drainage along with appropriate antibiotic therapy, which revealed a methicillin-resistant Staphylococcus aureus infection. At 6 months of age, the patient was admitted with anal abscesses. Due to the increased suspicion of primary immunodeficiency disease, genetic testing was conducted, which revealed ACSF3 biallelic variants inherited from both parents. Urine organic acid analysis revealed elevated levels of malonic and methylmalonic acids. At 29 months, the patient showed normal growth and development without any dietary modifications. He had occasional colds, but severe bacterial infections were absent. The prognosis suggests a benign disease course. Here, we present the first reported case of ACSF3 compound heterozygote variants in Korea.
Collapse
Affiliation(s)
- Joon Kee Lee
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Korea
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Arum Oh
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
4
|
da Silva-Buttkus P, Spielmann N, Klein-Rodewald T, Schütt C, Aguilar-Pimentel A, Amarie OV, Becker L, Calzada-Wack J, Garrett L, Gerlini R, Kraiger M, Leuchtenberger S, Östereicher MA, Rathkolb B, Sanz-Moreno A, Stöger C, Hölter SM, Seisenberger C, Marschall S, Fuchs H, Gailus-Durner V, Hrabě de Angelis M. Knockout mouse models as a resource for the study of rare diseases. Mamm Genome 2023; 34:244-261. [PMID: 37160609 PMCID: PMC10290595 DOI: 10.1007/s00335-023-09986-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.
Collapse
Affiliation(s)
- Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Christine Schütt
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Manuela A Östereicher
- Institute of Experimental Genetics, Applied Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377, Munich, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Stöger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany.
| |
Collapse
|
5
|
Kirk EP, Delatycki MB, Laing N. Reproductive genetic carrier screening and inborn errors of metabolism: The voice of the inborn errors of metabolism community needs to be heard. J Inherit Metab Dis 2022; 45:902-906. [PMID: 35460079 PMCID: PMC9539927 DOI: 10.1002/jimd.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Reproductive genetic carrier screening (RGCS) has a history spanning more than 50 years, but for most of that time has been limited to screening for one or a few conditions in targeted population groups. The advent of massively parallel sequencing has led to rapid growth in screening for panels of up to hundreds of genes. Such panels typically include numerous genes associated with inborn errors of metabolism (IEM). There are considerable potential benefits for families from screening, but there are also risks and potential pitfalls. The IEM community has a vital role to play in guiding gene selection and assisting with the complexities that arise from screening, including interpreting complex biochemical assays and counselling at-risk couples about phenotypes and treatments.
Collapse
Affiliation(s)
- Edwin P. Kirk
- Centre for Clinical GeneticsSydney Children's HospitalRandwickNew South WalesAustralia
- New South Wales Health Pathology Randwick Genomics LaboratoryRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesRandwickNew South WalesAustralia
| | - Martin B. Delatycki
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Nigel Laing
- Centre for Medical ResearchUniversity of Western Australia and Harry Perkins Institute of Medical ResearchNedlandsWestern AustraliaAustralia
- Department of Diagnostic GenomicsPathWest Laboratory Medicine, Department of HealthNedlandsWestern AustraliaAustralia
| |
Collapse
|
6
|
Hu S, Kong X. The genotype analysis and prenatal genetic diagnosis among 244 pedigrees with methylmalonic aciduria in China. Taiwan J Obstet Gynecol 2022; 61:290-298. [PMID: 35361390 DOI: 10.1016/j.tjog.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate the phenotypes, biochemical features and genotypes for 244 pedigrees with methylmalonic aciduria (MMA) in China, and to perform the prenatal genetic diagnosis by chorionic villus for these pedigrees. MATERIALS AND METHODS Gene analyses were performed for 244 pedigrees. There are 130 pedigrees, chorionic villus sampling was performed on the pregnant women to conduct the prenatal diagnosis. RESULTS Among 244 patients, 168 (68.9%) cases were combined methylmalonic aciduria and homocystinuria, 76 (31.1%) cases were isolated methylmalonic aciduria. All the patients were diagnosed with MMA by their clinical manifestation, elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and/or urine/blood methylmalonic acid with or without homocysteine. MMACHC, MMUT, SUCLG1 and LMBRD1 gene variants were found in 236 (96.7%) pedigrees included 6 probands with only one heterozygous variant out of 244 cases. For the 130 pedigrees who received a prenatal diagnosis, 22 fetuses were normal, 69 foetuses were carriers of heterozygous variants, and the remaining 39 foetuses harboured compound heterozygous variants or homozygous variants. The follow-up results were consistent with the prenatal diagnosis. CONCLUSION The present study indicates genetic heterogeneity in MMA patients. Genetic analysis is a convenient method for prenatal diagnosis that will aid in avoiding the delivery of MMA patients.
Collapse
Affiliation(s)
- Shuang Hu
- The First Affiliated Hospital of Zhengzhou University, Genetic and Prenatal Diagnosis Center, No.1 Jianshe East Road, Zhengzhou, Henan, CN 450052, China.
| | - Xiangdong Kong
- The First Affiliated Hospital of Zhengzhou University, Genetic and Prenatal Diagnosis Center, No.1 Jianshe East Road, Zhengzhou, Henan, CN 450052, China.
| |
Collapse
|
7
|
Sumathipala D, Strømme P, Fattahi Z, Lüders T, Sheng Y, Kahrizi K, Einarsen IH, Sloan JL, Najmabadi H, van den Heuvel L, Wevers RA, Guerrero-Castillo S, Mørkrid L, Valayannopoulos V, Backe PH, Venditti CP, van Karnebeek CD, Nilsen H, Frengen E, Misceo D. ZBTB11 dysfunction: spectrum of brain abnormalities, biochemical signature and cellular consequences. Brain 2022; 145:2602-2616. [PMID: 35104841 PMCID: PMC9337812 DOI: 10.1093/brain/awac034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes.
Collapse
Affiliation(s)
| | | | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Torben Lüders
- Department of Clinical Molecular Biology, Section of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ingunn Holm Einarsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jennifer L Sloan
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Lambert van den Heuvel
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands,United for Metabolic Disease—UMD, The Netherlands
| | - Sergio Guerrero-Castillo
- University Children’s Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Paul Hoff Backe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Clara D van Karnebeek
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands,United for Metabolic Disease—UMD, The Netherlands,Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Section of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | | | - Doriana Misceo
- Correspondence to: Doriana Misceo Department of Medical Genetics Oslo University Hospital and University of Oslo Postboks 4956 Nydalen, 0424 Oslo, Norway E-mail:
| |
Collapse
|
8
|
Heterogenous Clinical Landscape in a Consanguineous Malonic Aciduria Family. Int J Mol Sci 2021; 22:ijms222312633. [PMID: 34884438 PMCID: PMC8658006 DOI: 10.3390/ijms222312633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Malonic aciduria is an extremely rare inborn error of metabolism due to malonyl-CoA decarboxylase deficiency. This enzyme is encoded by the MLYCD (Malonyl-CoA Decarboxylase) gene, and the disease has an autosomal recessive inheritance. Malonic aciduria is characterized by systemic clinical involvement, including neurologic and digestive symptoms, metabolic acidosis, hypoglycemia, failure to thrive, seizures, developmental delay, and cardiomyopathy. We describe here two index cases belonging to the same family that, despite an identical genotype, present very different clinical pictures. The first case is a boy with neonatal metabolic symptoms, abnormal brain MRI, and dilated cardiomyopathy. The second case, the cousin of the first patient in a consanguineous family, showed later symptoms, mainly with developmental delay. Both patients showed high levels of malonylcarnitine on acylcarnitine profiles and malonic acid on urinary organic acid chromatographies. The same homozygous pathogenic variant was identified, c.346C > T; p. (Gln116*). We also provide a comprehensive literature review of reported cases. A review of the literature yielded 52 cases described since 1984. The most common signs were developmental delay and cardiomyopathy. Increased levels of malonic acid and malonylcarnitine were constant. Presentations ranged from neonatal death to patients surviving past adolescence. These two cases and reported patients in the literature highlight the inter- and intrafamilial variability of malonic aciduria.
Collapse
|
9
|
Luciani A, Denley MCS, Govers LP, Sorrentino V, Froese DS. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cell Mol Life Sci 2021; 78:6851-6867. [PMID: 34524466 PMCID: PMC8558192 DOI: 10.1007/s00018-021-03934-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria—the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat—are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding—and potentially reversing—the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.
Collapse
Affiliation(s)
- Alessandro Luciani
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthew C S Denley
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Larissa P Govers
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland
| | - Vincenzo Sorrentino
- Department of Musculo-Skeletal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1015, Lausanne, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
10
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism. Int J Mol Sci 2021; 22:ijms22073799. [PMID: 33917608 PMCID: PMC8038842 DOI: 10.3390/ijms22073799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD-/-) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.
Collapse
|
12
|
Ferreira CR, Rahman S, Keller M, Zschocke J. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis 2021; 44:164-177. [PMID: 33340416 PMCID: PMC9021760 DOI: 10.1002/jimd.12348] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Several initiatives at establishing a classification of inherited metabolic disorders have been published previously, some focusing on pathomechanisms, others on clinical manifestations, while yet another attempted a simplified approach of a comprehensive nosology. Some of these classifications suffered from shortcomings, such as lack of a mechanism for continuous update in light of a rapidly evolving field, or lack of widespread input from the metabolic community at large. Our classification-the International Classification of Inherited Metabolic Disorders, or International Classification of Inborn Metabolic Disorders (ICIMD)-includes 1450 disorders, and differs from prior approaches in that it benefited from input by a large number of experts in the field, and was endorsed by major metabolic societies around the globe. Several criteria such as pathway involvement and pathomechanisms were considered. The main purpose of the hierarchical, group-based approach of the ICIMD is an improved understanding of the interconnections between many individual conditions that may share functional, clinical, and diagnostic features. The ICIMD aims to include any primary genetic condition in which alteration of a biochemical pathway is intrinsic to specific biochemical, clinical, and/or pathophysiological features. As new disorders are discovered, we will seek the opinion of experts in the advisory board prior to inclusion in the appropriate group of the ICIMD, thus guaranteeing the continuing relevance of this classification via regular curation and expert advice.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Addresses for Correspondence: Carlos R. Ferreira, M.D., Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr, Building 49, Room 4A38, Bethesda, MD 20814, USA, ; Univ.-Prof. Dr. med. Johannes Zschocke, Ph.D., Institute of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria,
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Markus Keller
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
- Addresses for Correspondence: Carlos R. Ferreira, M.D., Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr, Building 49, Room 4A38, Bethesda, MD 20814, USA, ; Univ.-Prof. Dr. med. Johannes Zschocke, Ph.D., Institute of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria,
| | | |
Collapse
|
13
|
Wang P, Shu J, Gu C, Yu X, Zheng J, Zhang C, Cai C. Combined Malonic and Methylmalonic Aciduria Due to ACSF3 Variants Results in Benign Clinical Course in Three Chinese Patients. Front Pediatr 2021; 9:751895. [PMID: 34900860 PMCID: PMC8658908 DOI: 10.3389/fped.2021.751895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Combined malonic and methylmalonic aciduria (CMAMMA) is a rare metabolic disease caused by biallelic variants in ACSF3 gene. The clinical phenotype is highly heterogeneous in this disorder, ranging from asymptomatic to severe symptoms. No cases with CMAMMA were reported in China. Materials and Methods: In this study, three Chinese pediatric patients were diagnosed with CMAMMA unexpectedly while being treated for other ailments. To better characterize CMAMMA in a Chinese population, we made a multidimensional analysis with detailed clinical phenotype, semi-quantitative detection of urine organic acid, and analysis of ACSF3 gene variants. Results: The clinical presentation of these patients is quite different; their main complaints were anemia, jaundice, or abnormal urine test, respectively. They showed no symptoms of the classic methylmalonic academia, but urine organic acid analysis showed elevated malonic acid and methylmalonic acid in all the patients repeatedly. Variants were found at four sites in ACSF3 gene. Patient 1 carried the compound heterogeneous variant c.689G> A (p.Trp230*)/c.1456G> A (p.Ala486Thr). A compound heterozygous variant c.473C> T (p.Pro158Leu)/c.1456G> A (p.Ala486Thr) was identified in patient 2. Patient 3 harbored a novel homozygous variant c.1447A> G (p.Lys483Glu). Conclusions: Three Chinese patients were diagnosed with CMAMMA caused by ACSF3 variants. Their clinical course revealed that CMAMMA can be a benign condition that does not affect individual growth and development, but severe clinical phenotype may appear when other triggers exist. This study systematically elaborates CMAMMA in a Chinese population for the first time, broadens the spectrum of gene variant, and provides a strong basis for the etiological study of this disorder.
Collapse
Affiliation(s)
- Ping Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunyu Gu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Graduate College of Tianjin Medical University, Tianjin, China
| | - Xiaoli Yu
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jie Zheng
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunhua Zhang
- Matsumoto Institute of Life Science (MILS) International, Yokohama, Japan
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Department of Neurosurgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
14
|
Kastaniotis AJ, Autio KJ, R Nair R. Mitochondrial Fatty Acids and Neurodegenerative Disorders. Neuroscientist 2020; 27:143-158. [PMID: 32644907 DOI: 10.1177/1073858420936162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fatty acids in mitochondria, in sensu stricto, arise either as β-oxidation substrates imported via the carnitine shuttle or through de novo synthesis by the mitochondrial fatty acid synthesis (mtFAS) pathway. Defects in mtFAS or processes involved in the generation of the mtFAS product derivative lipoic acid (LA), including iron-sulfur cluster synthesis required for functional LA synthase, have emerged only recently as etiology for neurodegenerative disease. Intriguingly, mtFAS deficiencies very specifically affect CNS function, while LA synthesis and attachment defects have a pleiotropic presentation beyond neurodegeneration. Typical mtFAS defect presentations include optical atrophy, as well as basal ganglia defects associated with dystonia. The phenotype display of patients with mtFAS defects can resemble the presentation of disorders associated with coenzyme A (CoA) synthesis. A recent publication links these processes together based on the requirement of CoA for acyl carrier protein maturation. MtFAS defects, CoA synthesis- as well as Fe-S cluster-deficiencies share lack of LA as a common symptom.
Collapse
Affiliation(s)
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| |
Collapse
|
15
|
Tucci S. Brain metabolism and neurological symptoms in combined malonic and methylmalonic aciduria. Orphanet J Rare Dis 2020; 15:27. [PMID: 31969167 PMCID: PMC6977288 DOI: 10.1186/s13023-020-1299-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
Combined malonic and methylmalonic aciduria (CMAMMA) is an inborn error of metabolism which has been proposed being a benign condition. However, older patients may present with neurological manifestations such as seizures, memory problems, psychiatric problems and/ or cognitive decline. In fibroblasts from CMAMMA patients we have recently demonstrated a dysregulation of energy metabolism with increased dependency on β-oxidation for energy production. Because of the inability of the brain to rely efficiently on this pathway to retrieve the required energy to a great extent, we hypothesize an alternative disease-causing mechanism that does not only include the accumulation of the metabolites malonic and methylmalonic acids. Here, we suggest a novel hypothesis on the possible pathophysiological mechanism responsible for the development of neurological symptoms in the long-run.
Collapse
Affiliation(s)
- Sara Tucci
- Department of General Pediatrics and Adolescent Medicine, Laboratory of Clinical Biochemistry and Metabolism, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Mathildenstrasse 1, 79106, Freiburg, Germany.
| |
Collapse
|
16
|
Yang H, Zhao C, Tang MC, Wang Y, Wang SP, Allard P, Furtos A, Mitchell GA. Inborn errors of mitochondrial acyl-coenzyme a metabolism: acyl-CoA biology meets the clinic. Mol Genet Metab 2019; 128:30-44. [PMID: 31186158 DOI: 10.1016/j.ymgme.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
The last decade saw major advances in understanding the metabolism of Coenzyme A (CoA) thioesters (acyl-CoAs) and related inborn errors (CoA metabolic diseases, CAMDs). For diagnosis, acylcarnitines and organic acids, both derived from acyl-CoAs, are excellent markers of most CAMDs. Clinically, each CAMD is unique but strikingly, three main patterns emerge: first, systemic decompensations with combinations of acidosis, ketosis, hypoglycemia, hyperammonemia and fatty liver; second, neurological episodes, particularly acute "stroke-like" episodes, often involving the basal ganglia but sometimes cerebral cortex, brainstem or optic nerves and third, especially in CAMDs of long chain fatty acyl-CoA metabolism, lipid myopathy, cardiomyopathy and arrhythmia. Some patients develop signs from more than one category. The pathophysiology of CAMDs is not precisely understood. Available data suggest that signs may result from CoA sequestration, toxicity and redistribution (CASTOR) in the mitochondrial matrix has been suggested to play a role. This predicts that most CAMDs cause deficiency of CoA, limiting mitochondrial energy production, and that toxic effects from the abnormal accumulation of acyl-CoAs and from extramitochondrial functions of acetyl-CoA may also contribute. Recent progress includes the following. (1) Direct measurements of tissue acyl-CoAs in mammalian models of CAMDs have been related to clinical features. (2) Inborn errors of CoA biosynthesis were shown to cause clinical changes similar to those of inborn errors of acyl-CoA degradation. (3) CoA levels in cells can be influenced pharmacologically. (4) Roles for acetyl-CoA are increasingly identified in all cell compartments. (5) Nonenzymatic acyl-CoA-mediated acylation of intracellular proteins occurs in mammalian tissues and is increased in CAMDs.
Collapse
Affiliation(s)
- Hao Yang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Chen Zhao
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada; College of Animal Science and Technology, Northwest A&F University, China
| | | | - Youlin Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | | | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
17
|
Abdrabo LS, Watkins D, Wang SR, Lafond-Lapalme J, Riviere JB, Rosenblatt DS. Genome and RNA sequencing in patients with methylmalonic
aciduria of unknown cause. Genet Med 2019; 22:432-436. [DOI: 10.1038/s41436-019-0640-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
|
18
|
Wehbe Z, Behringer S, Alatibi K, Watkins D, Rosenblatt D, Spiekerkoetter U, Tucci S. The emerging role of the mitochondrial fatty-acid synthase (mtFASII) in the regulation of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1629-1643. [PMID: 31376476 DOI: 10.1016/j.bbalip.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022]
Abstract
Malonyl-CoA synthetase (ACSF3) catalyzes the first step of the mitochondrial fatty acid biosynthesis (mtFASII). Mutations in ACSF3 cause CMAMMA a rare inborn error of metabolism. The clinical phenotype is very heterogeneous, with some patients presenting with neurologic manifestations. In some children, presenting symptoms such as coma, ketoacidosis and hypoglycemia are suggestive of an intermediary metabolic disorder. The overall pathophysiological mechanisms are not understood. In order to study the role of mtFASII in the regulation of energy metabolism we performed a comprehensive metabolic phenotyping with Seahorse technology proteomics in fibroblasts from healthy controls and ACSF3 patients. SILAC-based proteomics and lipidomic analysis were performed to investigate the effects of hypofunctional mtFASII on proteome and lipid homeostasis of complex lipids. Our data clearly confirmed an impaired mitochondrial flexibility characterized by reduced mitochondrial respiration and glycolytic flux due to a lower lipoylation degree. These findings were accompanied by the adaptational upregulation of β-oxidation and by the reduction of anaplerotic amino acids as compensatory mechanism to address the required energy need. Finally, lipidomic analysis demonstrated that the content of the bioactive lipids sphingomyelins and cardiolipins was strongly increased. Our data clearly demonstrate the role of mtFASII in metabolic regulation. Moreover, we show that mtFASII acts as mediator in the lipid-mediated signaling processes in the regulation of energy homeostasis and metabolic flexibility.
Collapse
Affiliation(s)
- Zeinab Wehbe
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, 79106 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Sidney Behringer
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, 79106 Freiburg, Germany
| | - Khaled Alatibi
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, 79106 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - David Watkins
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, H4A 3J1 Montreal, Quebec, Canada
| | - David Rosenblatt
- Department of Human Genetics, McGill University and Research Institute McGill University Health Centre, H4A 3J1 Montreal, Quebec, Canada
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, 79106 Freiburg, Germany
| | - Sara Tucci
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
19
|
Misra BB, Puppala SR, Comuzzie AG, Mahaney MC, VandeBerg JL, Olivier M, Cox LA. Analysis of serum changes in response to a high fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis. PLoS One 2019; 14:e0214487. [PMID: 30951537 PMCID: PMC6450610 DOI: 10.1371/journal.pone.0214487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic plaques are characterized by an accumulation of macrophages, lipids, smooth muscle cells, and fibroblasts, and, in advanced stages, necrotic debris within the arterial walls. Dietary habits such as high fat and high cholesterol (HFHC) consumption are known risk factors for atherosclerosis. However, the key metabolic contributors to diet-induced atherosclerosis are far from established. Herein, we investigate the role of a 2-year HFHC diet challenge in the metabolic changes of development and progression of atherosclerosis. We used a non-human primate (NHP) model (baboons, n = 60) fed a HFHC diet for two years and compared metabolomic profiles in serum from animals on baseline chow with serum collected after the challenge diet using two-dimensional gas chromatography time-of-flight mass-spectrometry (2D GC-ToF-MS) for untargeted metabolomic analysis, to quantify metabolites that contribute to atherosclerotic lesion formation. Further, clinical biomarkers associated with atherosclerosis, lipoprotein measures, fat indices, and arterial plaque formation (lesions) were quantified. Using two chemical derivatization (i.e., silylation) approaches, we quantified 321 metabolites belonging to 66 different metabolic pathways, which revealed significantly different metabolic profiles of HFHC diet and chow diet fed baboon sera. We found heritability of two important metabolites, lactic acid and asparagine, in the context of diet-induced metabolic changes. In addition, abundance of cholesterol, lactic acid, and asparagine were sex-dependent. Finally, 35 metabolites correlated (R2, 0.068-0.271, P < 0.05) with total lesion burden assessed in three arteries (aortic arch, common iliac artery, and descending aorta) which could serve as potential biomarkers pending further validation. This study demonstrates the feasibility of detecting sex-specific and heritable metabolites in NHPs with diet-induced atherosclerosis using untargeted metabolomics allowing understanding of atherosclerotic disease progression in humans.
Collapse
Affiliation(s)
- Biswapriya B. Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sobha R. Puppala
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John L. VandeBerg
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
20
|
Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Adv Biol Regul 2019; 71:34-40. [PMID: 30201289 PMCID: PMC6347522 DOI: 10.1016/j.jbior.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA is a central metabolite in fatty acid biochemistry. It is the rate-determining intermediate in fatty acid synthesis but is also an allosteric inhibitor of the rate-setting step in mitochondrial long-chain fatty acid oxidation. While these canonical cytoplasmic roles of malonyl-CoA have been well described, malonyl-CoA can also be generated within the mitochondrial matrix by an alternative pathway: the ATP-dependent ligation of malonate to Coenzyme A by the malonyl-CoA synthetase ACSF3. Malonate, a competitive inhibitor of succinate dehydrogenase of the TCA cycle, is a potent inhibitor of mitochondrial respiration. A major role for ACSF3 is to provide a metabolic pathway for the clearance of malonate by the generation of malonyl-CoA, which can then be decarboxylated to acetyl-CoA by malonyl-CoA decarboxylase. Additionally, ACSF3-derived malonyl-CoA can be used to malonylate lysine residues on proteins within the matrix of mitochondria, possibly adding another regulatory layer to post-translational control of mitochondrial metabolism. The discovery of ACSF3-mediated generation of malonyl-CoA defines a new mitochondrial metabolic pathway and raises new questions about how the metabolic fates of this multifunctional metabolite intersect with mitochondrial metabolism.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|