1
|
Viegas J, Cardoso EM, Bonneau L, Esteves AF, Ferreira CL, Alves G, Santos-Silva AJ, Vitale M, Arosa FA, Taborda-Barata L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024; 12:408. [PMID: 38398010 PMCID: PMC10886703 DOI: 10.3390/biomedicines12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro models are warranted. The main aim of this study was to evaluate the dose and time effects of exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or 2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3, no meaningful release of "alarmins" (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were observed. We have characterized safe time and dose conditions for aerosol nebulizations using a novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory stimulus in the future.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Elsa M. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- ESS-IPG-School of Health Sciences, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| | - Lucile Bonneau
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Ana Filipa Esteves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Catarina L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - António Jorge Santos-Silva
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Unhais da Serra Thermal Spa, Avenida das Termas, 6215-574 Unhais da Serra, Portugal
| | - Marco Vitale
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, 20132 Milan, Italy;
- FoRST—Fondazione per la Ricerca Scientifica Termale, 00198 Rome, Italy
| | - Fernando A. Arosa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Luís Taborda-Barata
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- UBIAir—Clinical & Experimental Lung Centre, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CACB—Clinical Academic Centre of Beiras, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Department of Immunoallergology, Cova da Beira University Hospital Centre, Alameda Pêro da Covilhã, 6200-251 Covilhã, Portugal
| |
Collapse
|
2
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
3
|
Neuhaus W, Reininger-Gutmann B, Rinner B, Plasenzotti R, Wilflingseder D, De Kock J, Vanhaecke T, Rogiers V, Jírová D, Kejlová K, Knudsen LE, Nielsen RN, Kleuser B, Kral V, Thöne-Reineke C, Hartung T, Pallocca G, Rovida C, Leist M, Hippenstiel S, Lang A, Retter I, Krämer S, Jedlicka P, Ameli K, Fritsche E, Tigges J, Kuchovská E, Buettner M, Bleich A, Baumgart N, Baumgart J, Meinhardt MW, Spanagel R, Chourbaji S, Kränzlin B, Seeger B, von Köckritz-Blickwede M, Sánchez-Morgado JM, Galligioni V, Ruiz-Pérez D, Movia D, Prina-Mello A, Ahluwalia A, Chiono V, Gutleb AC, Schmit M, van Golen B, van Weereld L, Kienhuis A, van Oort E, van der Valk J, Smith A, Roszak J, Stępnik M, Sobańska Z, Reszka E, Olsson IAS, Franco NH, Sevastre B, Kandarova H, Capdevila S, Johansson J, Svensk E, Cederroth CR, Sandström J, Ragan I, Bubalo N, Kurreck J, Spielmann H. The Current Status and Work of Three Rs Centres and Platforms in Europe. Altern Lab Anim 2022; 50:381-413. [PMID: 36458800 DOI: 10.1177/02611929221140909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general.
Collapse
Affiliation(s)
- Winfried Neuhaus
- EUSAAT, 31189Austrian Institute of Technology (AIT) GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria, and Danube Private University, Department of Medicine, Krems, Austria
| | | | - Beate Rinner
- Biomedical Research, 31475Medical University Graz, Austria
| | - Roberto Plasenzotti
- Department of Biomedical Research, 27271Medical University of Vienna, Austria
| | - Doris Wilflingseder
- 27255Institute of Hygiene and Medical Microbiology Medical University of Innsbruck, Austria
| | - Joery De Kock
- 70493Vrije Universiteit Brussel (VUB), Innovation Centre-3R Alternatives (IC-3Rs), Dept. In Vitro Toxicology and Dermato-Cosmetology (IVTD), Brussels, Belgium
| | - Tamara Vanhaecke
- 70493Vrije Universiteit Brussel (VUB), Innovation Centre-3R Alternatives (IC-3Rs), Dept. In Vitro Toxicology and Dermato-Cosmetology (IVTD), Brussels, Belgium
| | - Vera Rogiers
- 70493Vrije Universiteit Brussel (VUB), Innovation Centre-3R Alternatives (IC-3Rs), Dept. In Vitro Toxicology and Dermato-Cosmetology (IVTD), Brussels, Belgium
| | - Dagmar Jírová
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | - Kristina Kejlová
- Centre of Toxicology and Health Safety, 37739National Institute of Public Health, Prague, Czech Republic
| | | | | | - Burkhard Kleuser
- 9166Freie Universität Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany
| | - Vivian Kral
- 9166Freie Universität Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany
| | - Christa Thöne-Reineke
- 9166Freie Universität Berlin, Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behaviour and Laboratory Animal Science, Berlin, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT) Europe, University of Konstanz, Germany
| | - Giorgia Pallocca
- Center for Alternatives to Animal Testing (CAAT) Europe, University of Konstanz, Germany
| | - Costanza Rovida
- Center for Alternatives to Animal Testing (CAAT) Europe, University of Konstanz, Germany
| | - Marcel Leist
- Center for Alternatives to Animal Testing (CAAT) Europe, University of Konstanz, Germany
| | - Stefan Hippenstiel
- 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité3R, Berlin, Germany
| | - Annemarie Lang
- 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité3R, Berlin, Germany
| | - Ida Retter
- 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité3R, Berlin, Germany
| | - Stephanie Krämer
- 3R Centre JLU Giessen, Interdisciplinary Centre for 3Rs in Animal Research (ICAR3R), Giessen, Germany
| | - Peter Jedlicka
- 3R Centre JLU Giessen, Interdisciplinary Centre for 3Rs in Animal Research (ICAR3R), Giessen, Germany
| | - Katharina Ameli
- 3R Centre JLU Giessen, Interdisciplinary Centre for 3Rs in Animal Research (ICAR3R), Giessen, Germany
| | - Ellen Fritsche
- 256593IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Tigges
- 256593IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Eliška Kuchovská
- 256593IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science, 9177Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, 9177Hannover Medical School, Hannover, Germany
| | - Nadine Baumgart
- TARC force 3R, Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-University Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Centre, Johannes Gutenberg-University Mainz, Germany
| | - Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility (IBF), University Heidelberg, Heidelberg, Germany
| | - Bettina Kränzlin
- Core Facility Preclinical Models, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bettina Seeger
- 460510University of Veterinary Medicine Hannover, Institute for Food Quality and Food Safety, Research Group Food Toxicology and Alternatives/Complementary Methods to Animal Experiments, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- 460510University of Veterinary Medicine Hannover, Department of Biochemistry & Research Centre for Emerging Infections and Zoonoses, Hannover, Germany
| | | | - Viola Galligioni
- Bioresearch and Veterinary Services, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ruiz-Pérez
- Bioresearch and Veterinary Services, The University of Edinburgh, Edinburgh, UK
| | - Dania Movia
- Comparative Medicine Unit, 8809Trinity College Dublin, College Green, Dublin, Ireland
| | - Adriele Prina-Mello
- Comparative Medicine Unit, 8809Trinity College Dublin, College Green, Dublin, Ireland
| | - Arti Ahluwalia
- Applied Radiation Therapy Trinity (ARTT) and Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), School of Medicine, 8809Trinity College Dublin, College Green, Dublin, Ireland
| | - Valeria Chiono
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), School of Medicine, 8809Trinity College Dublin, College Green, Dublin, Ireland
| | - Arno C Gutleb
- Department of Information Engineering, Università di Pisa and Centro 3R, Interuniversity Centre for the Promotion of 3Rs Principles in Teaching and Research, Italy
| | - Marthe Schmit
- Department of Mechanical and Aerospace Engineering, 19032Politecnico di Torino, Torino and Centro 3R, and Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Italy
| | - Bea van Golen
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Anne Kienhuis
- 2890Ministry of Agriculture, Nature and Food Quality, The Hague, The Netherlands
| | - Erica van Oort
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Jan van der Valk
- Netherlands National Committee for the protection of animals used for scientific purposes (NCad), The Hague, The Netherlands
| | - Adrian Smith
- National Institute for Public Health and the Environment-RIVM, BA Bilthoven, The Netherlands
| | - Joanna Roszak
- 3Rs-Centre, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maciej Stępnik
- 3Rs-Centre, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Norecopa, Ås, Norway
| | - Zuzanna Sobańska
- 3Rs-Centre, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edyta Reszka
- 3Rs-Centre, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - I Anna S Olsson
- The National Centre for Alternative Methods to Toxicity Assessment, 49611Nofer Institute of Occupational Medicine, Łódź, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | - Nuno Henrique Franco
- The National Centre for Alternative Methods to Toxicity Assessment, 49611Nofer Institute of Occupational Medicine, Łódź, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | - Bogdan Sevastre
- IBMC-Instituto de Biologia Molecular e Celular, 26706Universidade do Porto, Porto, Portugal
| | - Helena Kandarova
- i3S-Instituto de Investigação e Inovação em Saúde, 26706Universidade do Porto, Porto, Portugal
| | - Sara Capdevila
- Romanian Center for Alternative Test Methods (ROCAM) hosted by the 162275University of Agricultural Sciences and Veterinary Medicine in Cluj-Napoca, Romania
| | - Jessica Johansson
- Slovak National Platform for 3Rs-SNP3Rs, Bratislava, Slovakia; and Department of Tissue Cultures and Biochemical Engineering, Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 87171Slovak Academy of Sciences, Bratislava, Slovakia
| | - Emma Svensk
- Slovak National Platform for 3Rs-SNP3Rs, Bratislava, Slovakia; and Department of Tissue Cultures and Biochemical Engineering, Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 87171Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christopher R Cederroth
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Jenny Sandström
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Ian Ragan
- Swedish 3Rs Center, Swedish Board of Agriculture, Jönköping, Sweden
| | | | - Jens Kurreck
- National Centre for the 3Rs (NC3Rs), London, United Kingdom
| | - Horst Spielmann
- 9166Freie Universität Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany
| |
Collapse
|
4
|
Carnovale C, Guarnieri D, Di Cristo L, De Angelis I, Veronesi G, Scarpellini A, Malvindi MA, Barone F, Pompa PP, Sabella S. Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. NANOMATERIALS 2021; 11:nano11061587. [PMID: 34204296 PMCID: PMC8233905 DOI: 10.3390/nano11061587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022]
Abstract
Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.
Collapse
Affiliation(s)
- Catherine Carnovale
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | | | - Giulia Veronesi
- Laboratory of Chemistry and Biology of Metals (CBM), University Grenoble Alpes/CNRS/CEA, 38000 Grenoble, France;
- ESRF, the European Synchrotron, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | | | - Flavia Barone
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (I.D.A.); (F.B.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
- Correspondence:
| |
Collapse
|
5
|
Bessa MJ, Brandão F, Fokkens P, Cassee FR, Salmatonidis A, Viana M, Vulpoi A, Simon S, Monfort E, Teixeira JP, Fraga S. Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial in vitro model. Nanotoxicology 2021; 15:542-557. [PMID: 33734024 DOI: 10.1080/17435390.2021.1897698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro toxicity of engineered NP (ENP) [antimony tin oxide (Sb2O3•SnO2; ATO); zirconium oxide (ZrO2)], as well as process-generated NP (PGNP), and fine particles (PGFP), was assessed in MucilAir™ cultures at air-liquid interface (ALI). Cultures were exposed during three consecutive days to varying doses of the aerosolized NP. General cytotoxicity [lactate dehydrogenase (LDH) release, WST-1 metabolization], (oxidative) DNA damage, and the levels of pro-inflammatory mediators (IL-8 and MCP-1) were assessed. Data revealed that ENP (5.56 µg ATO/cm2 and 10.98 µg ZrO2/cm2) only caused mild cytotoxicity at early timepoints (24 h), whereas cells seemed to recover quickly since no significant changes in cytotoxicity were observed at late timepoints (72 h). No meaningful effects of the ENP were observed regarding DNA damage and cytokine levels. PGFP affected cell viability at dose levels as low as ∼9 µg/cm2, which was not seen for PGNP. However, exposure to PGNP (∼4.5 µg/cm2) caused an increase in oxidative DNA damage. These results indicated that PGFP and PGNP exhibit higher toxicity potential than ENP in mass per area unit. However, the presence of a mucociliary apparatus, as it occurs in vivo as a defense mechanism, seems to considerably attenuate the observed toxic effects. Our findings highlight the potential hazard associated with exposure to incidental NP in industrial settings.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Paul Fokkens
- National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Apostolos Salmatonidis
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), Barcelona, Spain.,LEITAT Technological Center, Barcelona, Spain
| | - Mar Viana
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), Barcelona, Spain
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simion Simon
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eliseo Monfort
- Institute of Ceramic Technology (ITC), Universitat Jaume I, Castellón, Spain
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Haddada MB, Movia D, Prina-Mello A, Spadavecchia J. Docetaxel gold complex nanoflowers: A chemo-biological evaluation for their use as nanotherapeutics. Colloids Surf B Biointerfaces 2020; 194:111172. [DOI: 10.1016/j.colsurfb.2020.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
|
7
|
Movia D, Bruni-Favier S, Prina-Mello A. In vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models-A Perspective. Front Bioeng Biotechnol 2020; 8:549. [PMID: 32582672 PMCID: PMC7284111 DOI: 10.3389/fbioe.2020.00549] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
When assessing the risk and hazard of a non-pharmaceutical compound, the first step is determining acute toxicity, including toxicity following inhalation. Inhalation is a major exposure route for humans, and the respiratory epithelium is the first tissue that inhaled substances directly interact with. Acute inhalation toxicity testing for regulatory purposes is currently performed only in rats and/or mice according to OECD TG403, TG436, and TG433 test guidelines. Such tests are biased by the differences in the respiratory tract architecture and function across species, making it difficult to draw conclusions on the potential hazard of inhaled compounds in humans. Research efforts have been therefore focused on developing alternative, human-relevant models, with emphasis on the creation of advanced In vitro models. To date, there is no In vitro model that has been accepted by regulatory agencies as a stand-alone replacement for inhalation toxicity testing in animals. Here, we provide a brief introduction to current OECD test guidelines for acute inhalation toxicity, the interspecies differences affecting the predictive value of such tests, and the current regulatory efforts to advance alternative approaches to animal-based inhalation toxicity studies. We then list the steps that should allow overcoming the current challenges in validating In vitro alternatives for the successful replacement of animal-based inhalation toxicity studies. These steps are inclusive and descriptive, and should be detailed when adopting in house-produced 3D cell models for inhalation tests. Hence, we provide a checklist of key parameters that should be reported in any future scientific publications for reproducibility and transparency.
Collapse
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin, Ireland
| | - Solene Bruni-Favier
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Movia D, Bazou D, Prina-Mello A. ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 2019; 19:854. [PMID: 31464606 PMCID: PMC6714313 DOI: 10.1186/s12885-019-6038-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. This study focuses on its most common form, Non-Small-Cell Lung Cancer (NSCLC). No cure exists for advanced NSCLC, and patient prognosis is extremely poor. Efforts are currently being made to develop effective inhaled NSCLC therapies. However, at present, reliable preclinical models to support the development of inhaled anti-cancer drugs do not exist. This is due to the oversimplified nature of currently available in vitro models, and the significant interspecies differences between animals and humans. Methods We have recently established 3D Multilayered Cell Cultures (MCCs) of human NSCLC (A549) cells grown at the Air-Liquid Interface (ALI) as the first in vitro tool for screening the efficacy of inhaled anti-cancer drugs. Here, we present an improved in vitro model formed by growing A549 cells and human fibroblasts (MRC-5 cell line) as an ALI multilayered co-culture. The model was characterized over 14-day growth and tested for its response to four benchmarking chemotherapeutics. Results ALI multilayered co-cultures showed an increased resistance to the four drugs tested as compared to ALI multilayered mono-cultures. The signalling pathways involved in the culture MultiDrug Resistance (MDR) were influenced by the cancer cell-fibroblast cross-talk, which was mediated through TGF-β1 release and subsequent activation of the PI3K/AKT/mTOR pathway. As per in vivo conditions, when inhibiting mTOR phosphorylation, MDR was triggered by activation of the MEK/ERK pathway activation and up-regulation in cIAP-1/2 expression. Conclusions Our study opens new research avenues for the development of alternatives to animal-based inhalation studies, impacting the development of anti-NSCLC drugs. Electronic supplementary material The online version of this article (10.1186/s12885-019-6038-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.,AMBER Centre, CRANN Institute, University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
9
|
Movia D, Bazou D, Volkov Y, Prina-Mello A. Multilayered Cultures of NSCLC cells grown at the Air-Liquid Interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 2018; 8:12920. [PMID: 30150787 PMCID: PMC6110800 DOI: 10.1038/s41598-018-31332-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence supports the advantages of inhalation over other drug-administration routes in the treatment of lung diseases, including cancer. Although data obtained from animal models and conventional in vitro cultures are informative, testing the efficacy of inhaled chemotherapeutic agents requires human-relevant preclinical tools. Such tools are currently unavailable. Here, we developed and characterized in vitro models for the efficacy testing of inhaled chemotherapeutic agents against non-small-cell lung cancer (NSCLC). These models recapitulated key elements of both the lung epithelium and the tumour tissue, namely the direct contact with the gas phase and the three-dimensional (3D) architecture. Our in vitro models were formed by growing, for the first time, human adenocarcinoma (A549) cells as multilayered mono-cultures at the Air-Liquid Interface (ALI). The in vitro models were tested for their response to four benchmarking chemotherapeutics, currently in use in clinics, demonstrating an increased resistance to these drugs as compared to sub-confluent monolayered 2D cell cultures. Chemoresistance was comparable to that detected in 3D hypoxic tumour spheroids. Being cultured in ALI conditions, the multilayered monocultures demonstrated to be compatible with testing drugs administered as a liquid aerosol by a clinical nebulizer, offering an advantage over 3D tumour spheroids. In conclusion, we demonstrated that our in vitro models provide new human-relevant tools allowing for the efficacy screening of inhaled anti-cancer drugs.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Yuri Volkov
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
- Department of Histology, Cytology and Embryology, First Moscow State Sechenov Medical University, Moskva, Russian Federation
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Towards the Identification of an In Vitro Tool for Assessing the Biological Behavior of Aerosol Supplied Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040563. [PMID: 29561767 PMCID: PMC5923605 DOI: 10.3390/ijerph15040563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NP)-based inhalation systems for drug delivery can be administered in liquid form, by nebulization or using pressurized metered dose inhalers, and in solid form by means of dry powder inhalers. However, NP delivery to the lungs has many challenges including the formulation instability due to particle-particle interactions and subsequent aggregation, causing poor deposition in the small distal airways and subsequent alveolar macrophages activity, which could lead to inflammation. This work aims at providing an in vitro experimental design for investigating the correlation between the physico-chemical properties of NP, and their biological behavior, when they are used as NP-based inhalation treatments, comparing two different exposure systems. By means of an aerosol drug delivery nebulizer, human lung cells cultured at air–liquid interface (ALI) were exposed to two titanium dioxide NP (NM-100 and NM-101), obtained from the JRC repository. In parallel, ALI cultures were exposed to NP suspension by direct inoculation, i.e., by adding the NP suspensions on the apical side of the cell cultures with a pipette. The formulation stability of NP, measured as hydrodynamic size distributions, the cell viability, cell monolayer integrity, cell morphology and pro-inflammatory cytokines secretion were investigated. Our results demonstrated that the formulation stability of NM-100 and NM-101 was strongly dependent on the aggregation phenomena that occur in the conditions adopted for the biological experiments. Interestingly, comparable biological data between the two exposure methods used were observed, suggesting that the conventional exposure coupled to ALI culturing conditions offers a relevant in vitro tool for assessing the correlation between the physico-chemical properties of NP and their biological behavior, when NP are used as drug delivery systems.
Collapse
|
11
|
Morel AL, Giraud S, Bialecki A, Moustaoui H, de La Chapelle ML, Spadavecchia J. Green extraction of endemic plants to synthesize gold nanoparticles for theranostic applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.flm.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|