1
|
Dussouy C, Dubreucq E, Chemardin P, Perrier V, Abadie J, Quiquampoix H, Plassard C, Behr JB. A dansyl-derivatized phytic acid analogue as a fluorescent substrate for phytases: experimental and computational approach. Bioorg Chem 2021; 110:104810. [PMID: 33744806 DOI: 10.1016/j.bioorg.2021.104810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
A new myo-inositol pentakisphosphate was synthesized, which featured a dansyl group at position C-5. The fluorescent tag was removed from the inositol by a 6-atom spacer to prevent detrimental steric interactions in the catalytic site of phytases. The PEG linker was used in order to enhance hydrophilicity and biocompatibility of the new artificial substrate. Computational studies showed a favorable positioning in the catalytic site of phytases. Enzymatic assays demonstrated that the tethered myo-inositol was processed by two recombinant phytases Phy-A and Phy-C, classified respectively as acid and alkaline phytases, with similar rates of phosphate release compared to their natural substrate.
Collapse
Affiliation(s)
- Christophe Dussouy
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Eric Dubreucq
- IATE, Université Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Patrick Chemardin
- SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Véronique Perrier
- IATE, Université Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Josiane Abadie
- Eco&Sols, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Hervé Quiquampoix
- Eco&Sols, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Claude Plassard
- Eco&Sols, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jean-Bernard Behr
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| |
Collapse
|
2
|
Konieczny V, Stefanakis JG, Sitsanidis ED, Ioannidou NAT, Papadopoulos NV, Fylaktakidou KC, Taylor CW, Koumbis AE. Synthesis of inositol phosphate-based competitive antagonists of inositol 1,4,5-trisphosphate receptors. Org Biomol Chem 2016; 14:2504-14. [PMID: 26818818 DOI: 10.1039/c5ob02623g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca(2+) channels that are widely expressed in animal cells, where they mediate the release of Ca(2+) from intracellular stores evoked by extracellular stimuli. A diverse array of synthetic agonists of IP3Rs has defined structure-activity relationships, but existing antagonists have severe limitations. We combined analyses of Ca(2+) release with equilibrium competition binding to IP3R to show that (1,3,4,6)IP4 is a full agonist of IP3R1 with lower affinity than (1,4,5)IP3. Systematic manipulation of this meso-compound via a versatile synthetic scheme provided a family of dimeric analogs of 2-O-butyryl-(1,3,4,6)IP4 and (1,3,4,5,6)IP5 that compete with (1,4,5)IP3 for binding to IP3R without evoking Ca(2+) release. These novel analogs are the first inositol phosphate-based competitive antagonists of IP3Rs with affinities comparable to that of the only commonly used competitive antagonist, heparin, the utility of which is limited by off-target effects.
Collapse
Affiliation(s)
- Vera Konieczny
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - John G Stefanakis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Efstratios D Sitsanidis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Natalia-Anastasia T Ioannidou
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos V Papadopoulos
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Konstantina C Fylaktakidou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Colin W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Alexandros E Koumbis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Murali C, Shashidhar M, Gonnade R, Bhadbhade M. Enhancing Intermolecular Benzoyl-Transfer Reactivity in Crystals by Growing a “Reactive” Metastable Polymorph by Using a Chiral Additive. Chemistry 2009; 15:261-9. [DOI: 10.1002/chem.200801484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Riley AM, Trusselle M, Kuad P, Borkovec M, Cho J, Choi JH, Qian X, Shears SB, Spiess B, Potter* BVL. scyllo-inositol pentakisphosphate as an analogue of myo-inositol 1,3,4,5,6-pentakisphosphate: chemical synthesis, physicochemistry and biological applications. Chembiochem 2006; 7:1114-22. [PMID: 16755629 PMCID: PMC1892220 DOI: 10.1002/cbic.200600037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Indexed: 01/08/2023]
Abstract
myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. Potentiometric and NMR titrations show that both pentakisphosphates undergo a conformational ring-flip at higher pH, beginning at pH 8 for scyllo-InsP(5) and pH 9 for Ins(1,3,4,5,6)P(5). Over the physiological pH range, however, the conformation of the inositol rings and the microprotonation patterns of the phosphate groups in Ins(1,3,4,5,6)P(5) and scyllo-InsP(5) are similar. Thus, scyllo-InsP(5) should be a useful tool for identifying biologically relevant actions of Ins(1,3,4,5,6)P(5), mediated by specific binding sites, and distinguishing them from nonspecific electrostatic effects. We also demonstrate that, although scyllo-InsP(5) and Ins(1,3,4,5,6)P(5) are both hydrolysed by multiple inositol polyphosphate phosphatase (MINPP), scyllo-InsP(5) is not dephosphorylated by PTEN or phosphorylated by Ins(1,3,4,5,6)P(5) 2-kinases. This finding both reinforces the value of scyllo-InsP(5) as a biological control and shows that the axial 2-OH group of Ins(1,3,4,5,6)P(5) plays a part in substrate recognition by PTEN and the Ins(1,3,4,5,6)P(5) 2-kinases.
Collapse
Affiliation(s)
- Andrew M. Riley
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| | - Melanie Trusselle
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| | - Paul Kuad
- Dr. P. Kuad, Prof. Dr. B. Spiess, Département de Pharmacochimie de la Communication Cellulaire, UMR 7175-LC1 du CNRS-ULP, Faculté de Pharmacie, 74, route du Rhin, B. P. 24, 67401 Illkirch Cedex (France.)
| | - Michal Borkovec
- Dr. M. Borkovec, Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland)
| | - Jaiesoon Cho
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Jae H. Choi
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Xun Qian
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Stephen B. Shears
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Bernard Spiess
- Dr. P. Kuad, Prof. Dr. B. Spiess, Département de Pharmacochimie de la Communication Cellulaire, UMR 7175-LC1 du CNRS-ULP, Faculté de Pharmacie, 74, route du Rhin, B. P. 24, 67401 Illkirch Cedex (France.)
| | - Barry V. L. Potter*
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| |
Collapse
|
5
|
Godage HY, Riley AM, Woodman TJ, Potter BVL. Regioselective hydrolysis of myo-inositol 1,3,5-orthobenzoate via a 1,2-bridged 2'-phenyl-1',3'-dioxolan-2'-ylium ion provides a rapid route to the anticancer agent Ins(1,3,4,5,6)P5. Chem Commun (Camb) 2006:2989-91. [PMID: 16832513 DOI: 10.1039/b605392k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid hydrolysis of myo-inositol 1,3,5-orthobenzoate leads regioselectively to 2-O-benzoyl-myo-inositol via a 1,2-bridged 2'-phenyl-1',3'-dioxolan-2'-ylium ion observed by 1H and 13C NMR spectroscopy, providing the precursor for a highly efficient route to the anticancer agent myo-inositol 1,3,4,5,6-pentakisphosphate.
Collapse
Affiliation(s)
- Himali Y Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | | | | |
Collapse
|
6
|
Chiral desymmetrisation of myo-inositol 1,3,5-orthobenzoate gives rapid access to precursors for second messenger analogues. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2005.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Kantevari S, Hoang CJ, Ogrodnik J, Egger M, Niggli E, Ellis-Davies GCR. Synthesis and Two-photon Photolysis of 6-(ortho-Nitroveratryl)-Caged IP3 in Living Cells. Chembiochem 2005; 7:174-80. [PMID: 16292788 DOI: 10.1002/cbic.200500345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthesis of a photolabile derivative of inositol-1,4,5-trisphosphate (IP3) is described. This new caged second messenger (6-ortho-nitroveratryl)-IP3 (6-NV-IP3) has an extinction coefficient of 5000 M(-1) cm(-1) at 350 nm, and a quantum yield of photolysis of 0.12. Therefore, 6-NV-IP3 is photolyzed with UV light about three times more efficiently than the widely used P(4(5))-1-(2-nitrophenyl)ethyl-caged IP3 (NPE-IP3). 6-NV-IP3 has a two-photon cross-section of about 0.035 GM at 730 nm. This absorbance is sufficiently large for effective two-photon excitation in living cells at modest power levels. Using near-IR light (5 mW, 710 nm, 80 MHz, pulse-width 70 fs), we produced focal bursts of IP3 in HeLa cells, as revealed by laser-scanning confocal imaging of intracellular Ca2+ concentrations. Therefore, 6-NV-IP3 can be used for efficient, subcellular photorelease of IP3, not only in cultured cells but also, potentially, in vivo. It is in the latter situation that two-photon photolysis should reveal its true forte.
Collapse
Affiliation(s)
- Srinivas Kantevari
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
8
|
Podeschwa MAL, Plettenburg O, Altenbach HJ. Flexible Stereo- and Regioselective Synthesis ofmyo-Inositol Phosphates(Part 2): Via Nonsymmetrical Conduritol B Derivatives. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400918] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Flexible Stereo- and Regioselective Synthesis ofmyo-Inositol Phosphates(Part 1): Via Symmetrical Conduritol B Derivatives. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Regioselective phosphorylation of vicinal 3,4-hydroxy myo-inositol derivative promoted practical synthesis of d-PtdIns(4,5)P2 and d-Ins(1,4,5)P3. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Yang X, Rudolf M, Carew MA, Yoshida M, Nerreter V, Riley AM, Chung SK, Bruzik KS, Potter BV, Schultz C, Shears SB. Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by inositol 3,4,5,6-tetrakisphosphate. J Biol Chem 1999; 274:18973-80. [PMID: 10383396 DOI: 10.1074/jbc.274.27.18973] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+-activated Cl- channels are inhibited by inositol 3,4,5, 6-tetrakisphosphate (Ins(3,4,5,6)P4) (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097), a novel second messenger that is formed after stimulus-dependent activation of phospholipase C (PLC). In this study, we show that inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) is the specific signal that ties increased cellular levels of Ins(3,4,5,6)P4 to changes in PLC activity. We first demonstrated that Ins(1,3,4)P3 inhibited Ins(3,4,5,6)P4 1-kinase activity that was either (i) in lysates of AR4-2J pancreatoma cells or (ii) purified 22,500-fold (yield = 13%) from bovine aorta. Next, we incubated [3H]inositol-labeled AR4-2J cells with cell permeant and non-radiolabeled 2,5,6-tri-O-butyryl-myo-inositol 1,3, 4-trisphosphate-hexakis(acetoxymethyl) ester. This treatment increased cellular levels of Ins(1,3,4)P3 2.7-fold, while [3H]Ins(3, 4,5,6)P4 levels increased 2-fold; there were no changes to levels of other 3H-labeled inositol phosphates. This experiment provides the first direct evidence that levels of Ins(3,4,5,6)P4 are regulated by Ins(1,3,4)P3 in vivo, independently of Ins(1,3,4)P3 being metabolized to Ins(3,4,5,6)P4. In addition, we found that the Ins(1, 3,4)P3 metabolites, namely Ins(1,3)P2 and Ins(3,4)P2, were >100-fold weaker inhibitors of the 1-kinase compared with Ins(1,3,4)P3 itself (IC50 = 0.17 microM). This result shows that dephosphorylation of Ins(1,3,4)P3 in vivo is an efficient mechanism to "switch-off" the cellular regulation of Ins(3,4,5,6)P4 levels that comes from Ins(1,3, 4)P3-mediated inhibition of the 1-kinase. We also found that Ins(1,3, 6)P3 and Ins(1,4,6)P3 were poor inhibitors of the 1-kinase (IC50 = 17 and >30 microM, respectively). The non-physiological trisphosphates, D/L-Ins(1,2,4)P3, inhibited 1-kinase relatively potently (IC50 = 0.7 microM), thereby suggesting a new strategy for the rational design of therapeutically useful kinase inhibitors. Overall, our data provide new information to support the idea that Ins(1,3,4)P3 acts in an important signaling cascade.
Collapse
Affiliation(s)
- X Yang
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shears SB. The versatility of inositol phosphates as cellular signals. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:49-67. [PMID: 9838040 DOI: 10.1016/s0005-2760(98)00131-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells from across the phylogenetic spectrum contain a variety of inositol phosphates. Many different functions have been ascribed to this group of compounds. However, it is remarkable how frequently several of these different inositol phosphates have been linked to various aspects of signal transduction. Therefore, this review assesses the evidence that inositol phosphates have evolved into a versatile family of second messengers.
Collapse
Affiliation(s)
- S B Shears
- Inositide Signalling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Chung SK, Chang YT, Lee EJ, Shin BG, Kwon YU, Kim KC, Lee DH, Kim MJ. Syntheses of two enantiomeric pairs of myo-inositol(1,2,4,5,6) and -(1,2,3,4,5) pentakisphosphate. Bioorg Med Chem Lett 1998; 8:1503-6. [PMID: 9873378 DOI: 10.1016/s0960-894x(98)00245-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two enantiomeric pairs of myo-inositol(1,2,4,5,6)P5 and -(1,2,3,4,5)P5 have efficiently been synthesized by means of the lipase catalyzed acetylation of 1,2:5,6-di-O-isopropylidene-myo-inositol and the benzoyl migration procedure.
Collapse
Affiliation(s)
- S K Chung
- Department of Chemistry, Pohang University of Science & Technology, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bandyopadhyay U, Kaiser T, Rudolf MT, Schultz C, Guse AH, Mayr GW. Vicinal thiols are involved in inositol 1,2,3,5,6-pentakisphosphate 5-phosphatase activity from fetal calf thymus. Biochem Biophys Res Commun 1997; 240:146-9. [PMID: 9367900 DOI: 10.1006/bbrc.1997.7629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inositol 1,2,3,5,6-pentakisphosphate (Ins(1,2,3,5,6)P5) 5-phosphatase present in fetal calf thymus has been partially purified. This enzyme was inhibited dose-dependently by different thiol modifiers like N-ethylmaleimide (NEM), p-chloromercuribenzene sulfonate (PCMBS), diamide, and phenylarsine oxide (PAO). The inhibition by PCMBS and diamide was protected by preincubation with dithiothreitol (DTT) and the phosphatase substrate, Ins(1,2,3,5,6)P5. Diamide, a compound that specifically modifies vicinal thiol groups, also blocked the 5-phosphatase dose-dependently. Specificity of this blockade was proven by using dimercaptopropanol (DMP), a compound known to protect vicinal thiol groups. DMP prevented the enzyme from inhibition by diamide. These data suggest that vicinal thiols are involved in Ins(1,2,3,5,6)P5 5-phosphatase activity.
Collapse
|