1
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Gamache A, Conarroe C, Adair S, Bauer T, Padilla F, Bullock TNJ. Interrogating the CD27:CD70 axis in αCD40-dependent control of pancreatic adenocarcinoma. Front Cell Dev Biol 2023; 11:1173686. [PMID: 37123403 PMCID: PMC10130518 DOI: 10.3389/fcell.2023.1173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Immune checkpoint blockade immunotherapy has radically changed patient outcomes in multiple cancer types. Pancreatic cancer is one of the notable exceptions, being protected from immunotherapy by a variety of mechanisms, including the presence of a dense stroma and immunosuppressive myeloid cells. Previous studies have demonstrated that CD40 stimulation can remodel the tumor microenvironment in a manner that promotes effector immune cell responses and can cooperate with immune checkpoint inhibition for durable tumor control mediated by T cells. Here we confirm the capability of this combination therapy to dramatically, and durably, control pancreatic cancer growth in an orthotopic model and that the immune memory to this cancer is primarily a function of CD4+ T cells. We extend this understanding by demonstrating that recruitment of recently primed T cells from the draining lymph nodes is not necessary for the observed control, suggesting that the pre-existing intra-tumoral cells respond to the combination therapy. Further, we find that the efficacy of CD40 stimulation is not dependent upon CD70, which is commonly induced on dendritic cells in response to CD40 agonism. Finally, we find that directly targeting the receptor for CD70, CD27, in combination with the TLR3 agonist polyIC, provides some protection despite failing to increase the frequency of interferon gamma-secreting T cells.
Collapse
Affiliation(s)
- Awndre Gamache
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Awndre Gamache,
| | - Claire Conarroe
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Sara Adair
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Todd Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA, United States
- Department of Radiology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Timothy N. J. Bullock
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Lutfi F, Wu L, Sunshine S, Cao X. Targeting the CD27-CD70 Pathway to Improve Outcomes in Both Checkpoint Immunotherapy and Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:715909. [PMID: 34630390 PMCID: PMC8493876 DOI: 10.3389/fimmu.2021.715909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitor therapies and allogeneic hematopoietic cell transplant (alloHCT) represent two distinct modalities that offer a chance for long-term cure in a diverse array of malignancies and have experienced many breakthroughs in recent years. Herein, we review the CD27-CD70 co-stimulatory pathway and its therapeutic potential in 1) combination with checkpoint inhibitor and other immune therapies and 2) its potential ability to serve as a novel approach in graft-versus-host disease (GVHD) prevention. We further review recent advances in the understanding of GVHD as a complex immune phenomenon between donor and host immune systems, particularly in the early stages with mixed chimerism, and potential novel therapeutic approaches to prevent the development of GVHD.
Collapse
Affiliation(s)
- Forat Lutfi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sarah Sunshine
- Department of Ophthalmology and Visual Sciences, Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland Medical Center, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD, United States
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
4
|
Chen H, Wei F, Yin M, Zhao Q, Liu Z, Yu B, Huang Z. CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunol Immunother 2021; 70:2059-2071. [PMID: 33439295 PMCID: PMC10992360 DOI: 10.1007/s00262-020-02838-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy, a type of adoptive cell therapy, has been successfully used when treating lymphoma malignancies, but not nearly as successful in treating solid tumors. Trophoblast cell surface antigen 2 (Trop2) is expressed in various solid tumors and plays a role in tumor growth, invasion, and metastasis. In this study, a CAR targeting Trop2 (T2-CAR) was developed with different co-stimulatory intercellular domains. T2-CAR T cells demonstrated a powerful killing ability in the presence of Trop2-positive cells following an in vitro assay. Moreover, T2-CAR T cells produced multiple effector cytokines under antigen stimulation. In tumor-bearing mouse models, the CD27-based T2-CAR T cells showed a higher antitumor activity. Additionally, more CD27-based T2-CAR T cells survived in tumor-bearing mice spleens as well as in the tumor tissue. CD27-based T2-CAR T cells were also found to upregulate IL-7Rα expression, while downregulating PD-1 expression. In conclusion, the CD27 intercellular domain can enhance the T2-CAR T cell killing effect via multiple mechanisms, thus indicating that a CD27-based T2-CAR T cell approach is suitable for clinical applications.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Apoptosis
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Proliferation
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Fengjiao Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Meng Yin
- Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qingyu Zhao
- Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhonghua Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, BioResource Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, N1311 Rm, No. 10 Bld, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
5
|
De Paris K. Knowledge is power-Rational design of cancer immunotherapy. J Leukoc Biol 2019; 106:1003-1006. [PMID: 31556463 DOI: 10.1002/jlb.5ce0819-238r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022] Open
Abstract
Discussion on how our increasing knowledge on tumor immunity and host defense mechanisms has drastically changed our ability to improve cancer outcomes through the rational design of immunotherapies.
Collapse
Affiliation(s)
- Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|