1
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. The probable role of tissue plasminogen activator/neuroserpin axis in Alzheimer's disease: a new perspective. Acta Neurol Belg 2024; 124:377-388. [PMID: 37917293 DOI: 10.1007/s13760-023-02403-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia associated with amyloid beta (Aβ) deposition. Dysfunction of the neuronal clearance pathway promotes the accumulation of Aβ. The plasminogen-activating system (PAS) is controlled by various enzymes like tissue plasminogen activators (tPA). Neuronal tPA enhances the conversion of plasminogen to plasmin, which cleaves Aβ; this function is controlled by many inhibitors of PAS, including a plasminogen-activating inhibitor (PAI-1) and neuroserpin. Therefore, the objective of the present narrative review was to explore the potential role of tPA/neuroserpin in the pathogenesis of AD. PAI-1 activity is increased in AD, which is involved in accumulating Aβ. Progressive increase of Aβ level during AD neuropathology is correlated with the over-production of PAI-1 with subsequent reduction of plasmin and tPA activities. Reducing plasmin and tPA activities promote Aβ by reducing Aβ clearance. Neuroserpin plays a critical role in the pathogenesis of AD as it regulates the expression and accumulation of Aβ. Higher expression of neuroserpin inhibits the neuroprotective tPA and the generation of plasmin with subsequent reduction in the clearance of Aβ. These observations raise conflicting evidence on whether neuroserpin is neuroprotective or involved in AD progression. Thus, neuroserpin over-expression with subsequent reduction of tPA may propagate AD neuropathology.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, PO Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, PO Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Wang J, Lin J, Wang J, Wang Y, Zhu Y, Xu X, Guo J. Effect of Annexin A2 on prognosis and sensitivity to immune checkpoint plus tyrosine kinase inhibition in metastatic renal cell carcinoma. Discov Oncol 2024; 15:86. [PMID: 38519766 PMCID: PMC10959890 DOI: 10.1007/s12672-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) therapy is the first-line recommendation for advanced renal cell carcinoma (RCC), but no biomarker has been approved for it. Annexin A2 (ANXA2) can induce immune escape in tumors. METHODS Two independent cohorts of advanced RCC treated by IO + TKI were utilized for survival analysis (ZS-MRCC, n = 45; Javelin-101, n = 726). ANXA2 expression was determined by RNA-sequencing. The impact of ANXA2 on the tumor microenvironment was assessed by RNA-sequencing, flow cytometry and immunohistochemistry in two localized RCC datasets (ZS-HRRCC, n = 40; TCGA-KIRC, n = 530). RESULTS ANXA2 was upregulated in non-responders of IO + TKI therapy (p = 0.027). High-ANXA2 group showed poor progression-free survival (PFS) in both the ZS-MRCC cohort (HR, 2.348; 95% CI 1.084-5.085; P = 0.025) and the Javelin-101 cohort (HR, 1.472; 95% CI 1.043-2.077; P = 0.027). Multivariate Cox regression determined ANXA2 as an independent prognostic factor (HR, 2.619; 95% CI 1.194-5.746; P = 0.016). High-ANXA2 was correlated with decreased proportion of granzyme B+ CD8+ T cells (Spearman's ρ = - 0.40, P = 0.01), and increased TIM-3+ (Spearman's ρ = 0.43, P < 0.001) and CTLA4+ (Spearman's ρ = 0.49, P < 0.001) tumor-infiltrating lymphocytes. A random forest (RF) score was further build by integrating ANXA2 and immune genes, which stratified patients who would benefit from IO + TKI therapy (low-RF score, IO + TKI vs TKI, HR = 0.453, 95% CI 0.328-0.626; high-RF score, IO + TKI vs TKI, HR = 0.877, 95% CI 0.661-1.165; interaction P = 0.003). CONCLUSIONS Upregulated ANXA2 was associated with poor PFS and therapeutic resistance in RCC treated by IO + TKI therapy, and related with T cell exhaustion. The integrated RF score could stratify patients who would benefit from IO + TKI therapy.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Neuroserpin: A potential biomarker for early-onset severe preeclampsia. Immunobiology 2023; 228:152339. [PMID: 36680978 DOI: 10.1016/j.imbio.2023.152339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Preeclampsia is a hypertensive disease of pregnancy associated with intense inflammatory and pro-coagulant responses. Neuroserpin is a serine protease inhibitor that has been involved in neurological and immune processes and has not yet been investigated in preeclampsia. Herein, we evaluated neuroserpin levels in association with other inflammatory mediators (IL-17A, IL-33, and CXCL-16) during severe preeclampsia. The mediators' plasma levels were measured by immunoassays in 24 pregnant women with severe preeclampsia (early preeclampsia: N = 17, late preeclampsia: N = 7), 34 normotensive pregnant women, and 32 non-pregnant women. In general, pregnancy was associated with higher levels of neuroserpin, IL-17A, IL-33, and CXCL-16 than the non-pregnant state. However, this increase was attenuated in pregnancies complicated by severe preeclampsia. Although neuroserpin levels did not differ between normotensive pregnant women and pregnant women with severe preeclampsia, neuroserpin levels tended to be lower in early-onset than in late-onset severe preeclampsia. There were positive correlations between neuroserpin and IL-17A, neuroserpin and CXCL-16, and IL-17A and CXCL-16 levels in women with severe preeclampsia. In addition, although the risk for developing severe preeclampsia was higher in older women in this study, maternal age did not significantly influence the mediators' levels, nor their correlations in the preeclampsia group. In summary, our data suggest that neuroserpin might be a potential biomarker for early-onset severe preeclampsia and, that the imbalance among neuroserpin, IL-17A, IL-33, and CXCL-16 levels may be associated with the pathogenesis of preeclampsia, regardless of the maternal age.
Collapse
|
4
|
Torrente D, Su EJ, Fredriksson L, Warnock M, Bushart D, Mann KM, Emal CD, Lawrence DA. Compartmentalized Actions of the Plasminogen Activator Inhibitors, PAI-1 and Nsp, in Ischemic Stroke. Transl Stroke Res 2022; 13:801-815. [PMID: 35122213 PMCID: PMC9349468 DOI: 10.1007/s12975-022-00992-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Tissue plasminogen activator (tPA) is a multifunctional protease. In blood tPA is best understood for its role in fibrinolysis, whereas in the brain tPA is reported to regulate blood-brain barrier (BBB) function and to promote neurodegeneration. Thrombolytic tPA is used for the treatment of ischemic stroke. However, its use is associated with an increased risk of hemorrhagic transformation. In blood the primary regulator of tPA activity is plasminogen activator inhibitor 1 (PAI-1), whereas in the brain, its primary inhibitor is thought to be neuroserpin (Nsp). In this study, we compare the effects of PAI-1 and Nsp deficiency in a mouse model of ischemic stroke and show that tPA has both beneficial and harmful effects that are differentially regulated by PAI-1 and Nsp. Following ischemic stroke Nsp deficiency in mice leads to larger strokes, increased BBB permeability, and increased spontaneous intracerebral hemorrhage. In contrast, PAI-1 deficiency results in smaller infarcts and increased cerebral blood flow recovery. Mechanistically, our data suggests that these differences are largely due to the compartmentalized action of PAI-1 and Nsp, with Nsp deficiency enhancing tPA activity in the CNS which increases BBB permeability and worsens stroke outcomes, while PAI-1 deficiency enhances fibrinolysis and improves recovery. Finally, we show that treatment with a combination therapy that enhances endogenous fibrinolysis by inhibiting PAI-1 with MDI-2268 and reduces BBB permeability by inhibiting tPA-mediated PDGFRα signaling with imatinib significantly reduces infarct size compared to vehicle-treated mice and to mice with either treatment alone.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enming Joseph Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Linda Fredriksson
- Biomedicum, Karolinska Institute, Solnavägen 9, Quarter 6D, 17165, Solna, Sweden
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - David Bushart
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
- Current affiliation: Ohio State University College of Medicine, Columbus, OH, USA
| | - Kris M Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
5
|
Plasminogen and plasmin can bind to human T cells and generate truncated CCL21 that increases dendritic cell chemotactic responses. J Biol Chem 2022; 298:102112. [PMID: 35690148 PMCID: PMC9270246 DOI: 10.1016/j.jbc.2022.102112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin, but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors, and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C Motif Chemokine Ligand 21 (CCL21). Video microscopy and western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells towards higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma towards immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.
Collapse
|
6
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
7
|
Seillier C, Hélie P, Petit G, Vivien D, Clemente D, Le Mauff B, Docagne F, Toutirais O. Roles of the tissue-type plasminogen activator in immune response. Cell Immunol 2021; 371:104451. [PMID: 34781155 PMCID: PMC8577548 DOI: 10.1016/j.cellimm.2021.104451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has once again
brought to the forefront the existence of a tight link between the
coagulation/fibrinolytic system and the immunologic processes.
Tissue-type plasminogen activator (tPA) is a serine protease with a key
role in fibrinolysis by converting plasminogen into plasmin that can
finally degrade fibrin clots. tPA is released in the blood by endothelial
cells and hepatocytes but is also produced by various types of immune
cells including T cells and monocytes. Beyond its role on hemostasis, tPA
is also a potent modulator of inflammation and is involved in the
regulation of several inflammatory diseases. Here, after a brief
description of tPA structure, we review its new functions in adaptive
immunity focusing on T cells and antigen presenting cells. We intend to
synthesize the recent knowledge on proteolysis- and receptor-mediated
effects of tPA on immune response in physiological and pathological
context.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Pauline Hélie
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Gautier Petit
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Brigitte Le Mauff
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Olivier Toutirais
- Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France; Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
8
|
Ma K, Chen X, Liu W, Yang Y, Chen S, Sun J, Ma C, Wang T, Yang J. ANXA2 is correlated with the molecular features and clinical prognosis of glioma, and acts as a potential marker of immunosuppression. Sci Rep 2021; 11:20839. [PMID: 34675316 PMCID: PMC8531374 DOI: 10.1038/s41598-021-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that ANXA2 is important in the development of many cancers, while its role in glioma-related immune response remains unclear. We aimed to comprehensively investigate its biological characteristics and clinical value in glioma. We analyzed 699 glioma samples from The Cancer Genome Atlas as training cohort and 325 samples from the Chinese Glioma Genome Atlas as validation cohort. All the statistical analyses and figures were generated with R. ANXA2 was overexpressed significantly in high-grade glioma, isocitrate dehydrogenase wild-type and mesenchymal-subtype glioma. ANXA2 was a special indicator of mesenchymal subtype. The survival analysis showed that highly-expressed ANXA2 was related to worse survival status as an independent factor of poor prognosis. Further gene ontology analysis showed that ANXA2 was mainly involved in immune response and inflammatory activities of glioma. Subsequent correlation analysis showed that ANXA2 was positively correlated with HCK, LCK, MHC II, STAT1 and interferon but negatively with IgG. Meanwhile, ANXA2 was positively related to the infiltration of tumor-related macrophages, regulatory T cells and myeloid-derived suppressor cells. Our study revealed that ANXA2 is a biomarker closely related to the malignant phenotype and poor prognosis of glioma, and plays an important role in immune response, inflammatory activity and immunosuppression.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Jianjun Sun
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Changcheng Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Loef EJ, Sheppard HM, Birch NP, Dunbar PR. Live-Cell Microscopy Reveals That Human T Cells Primarily Respond Chemokinetically Within a CCL19 Gradient That Induces Chemotaxis in Dendritic Cells. Front Immunol 2021; 12:628090. [PMID: 33841411 PMCID: PMC8033042 DOI: 10.3389/fimmu.2021.628090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to study migratory behavior of immune cells is crucial to understanding the dynamic control of the immune system. Migration induced by chemokines is often assumed to be directional (chemotaxis), yet commonly used end-point migration assays are confounded by detecting increased cell migration that lacks directionality (chemokinesis). To distinguish between chemotaxis and chemokinesis we used the classic “under-agarose assay” in combination with video-microscopy to monitor migration of CCR7+ human monocyte-derived dendritic cells and T cells in response to a concentration gradient of CCL19. Formation of the gradients was visualized with a fluorescent marker and lasted several hours. Monocyte-derived dendritic cells migrated chemotactically towards the CCL19 gradient. In contrast, T cells exhibited a biased random walk that was largely driven by increased exploratory chemokinesis towards CCL19. This dominance of chemokinesis over chemotaxis in T cells is consistent with CCR7 ligation optimizing T cell scanning of antigen-presenting cells in lymphoid tissues.
Collapse
Affiliation(s)
- Evert J Loef
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Ding S, Chen Q, Chen H, Luo B, Li C, Wang L, Asakawa T. The Neuroprotective Role of Neuroserpin in Ischemic and Hemorrhagic Stroke. Curr Neuropharmacol 2021; 19:1367-1378. [PMID: 33032511 PMCID: PMC8719291 DOI: 10.2174/1570159x18666201008113052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Tissue plasminogen activator (tPA) is commonly used to treat acute ischemic stroke within an appropriate therapeutic window. Its inhibitor, neuroserpin (NSP), is reported to exhibit neuroprotective effects on stroke. This review aims to summarize, from literature, the available evidence, potential mechanisms, and knowledge limitations regarding the neuroprotective role of NSP in stroke. All the available evidence indicates that the regulation of the inflammatory response may play a key role in the mechanisms of NSP, which involve all the constituents of the neuroimmune axis. The neuroinflammatory response triggered by stroke can be reversed by NSP, with complicated mechanisms such as maintenance and reconstruction of the structure and function of the blood-brain barrier (BBB), protection of the cells in the central nervous system, and suppression of cell death in both ischemic and hemorrhagic stroke. Moreover, available evidence strongly suggests a tPA-independent mechanism is involved in NSP. However, there are many important issues that are still unclear and need further investigation, such as the effects of NSP on hemorrhagic stroke, the role of the tPA-independent neuroprotective mechanisms, and the clinical application prospects of NSP. We believe our work will be helpful to further understand the neuroprotective role of NSP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tetsuya Asakawa
- Address correspondence to this author at the Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, Guangdong Province, 518033, China; Tel: + 86-755-8398-2275; Fax: + 86-755-8398-0805; E-mail:
| |
Collapse
|
12
|
Qiu LW, Liu YF, Cao XQ, Wang Y, Cui XH, Ye X, Huang SW, Xie HJ, Zhang HJ. Annexin A2 promotion of hepatocellular carcinoma tumorigenesis via the immune microenvironment. World J Gastroenterol 2020; 26:2126-2137. [PMID: 32476780 PMCID: PMC7235202 DOI: 10.3748/wjg.v26.i18.2126] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a dismal prognosis, especially when diagnosed at advanced stages. Annexin A2 (ANXA2), is found to promote cancer progression and therapeutic resistance. However, the underlining mechanisms of ANXA2 in immune escape of HCC remain poorly understood up to now. Herein, we summarized the molecular function of ANXA2 in HCC and its relationship with prognosis. Furthermore, we tentatively elucidated the underlying mechanism of ANXA2 immune escape of HCC by upregulating the proportion of regulatory T cells and the expression of several inhibitory molecules, and by downregulating the proportion of natural killer cells and dendritic cells and the expression of several inhibitory molecules or effector molecules. We expect a lot of in-depth studies to further reveal the underlying mechanism of ANXA2 in immune escape of HCC in the future.
Collapse
Affiliation(s)
- Li-Wei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Qing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing 101149, China
| | - Yan Wang
- Emergency Department, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Hong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Xian Ye
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shuo-Wen Huang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hong-Jun Xie
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hai-Jian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|