1
|
Menon SR, Sahu S, Mitra A, Chakraborty A, Malhotra G, Kamaldeep, Tawate M, Lad S, Rakshit S, Upadhye T, Ray MK, Banerjee S. On the automated radiosynthesis of pharmaceutical grade [ 68Ga]Ga-Pentixafor, its pre-clinical evaluation, clinical application and radiation dosimetry aspects. Sci Rep 2025; 15:6476. [PMID: 39987209 PMCID: PMC11846852 DOI: 10.1038/s41598-024-84096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/19/2024] [Indexed: 02/24/2025] Open
Abstract
The current study outlines a consistent and reproducible protocol for the routine clinical dose preparation of [68Ga]Ga-Pentixafor using the Eckert and Ziegler 'Modular-Lab Standard' non-cassette based automated module, that can be effectively used in the hospital radiopharmacy unit of a high volume nuclear medicine centre. The pre-clinical studies (including in-vitro cell line studies, in-vivo PET/CT imaging and pre-clinical dosimetry) were conducted to show the promising potential of the product for clinical use in targeting CXCR4 tumor overexpression. PET/CT image of SCID mouse bearing lymphoma xenograft tumor, at 2 h post-injection, clearly delineated the tumor. The pre-clinical dosimetry results show the suitability of the product for clinical use in patients. [68Ga]Ga-Pentixafor when administered to patients with primary aldosteronism exhibited distinct uptake in the adrenal nodules. The clinical PET/CT scan of the patients demonstrated the potential use of CXCR4 targeted imaging as a promising surgical decision-making tool for patients with primary aldosteronism.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Arpit Mitra
- Radiopharmaceutical Laboratory, Board of Radiation and Isotope Technology, Navi Mumbai, Maharashtra, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gaurav Malhotra
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Kamaldeep
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sangita Lad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Trupti Upadhye
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Mukti Kanta Ray
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
- Radiological Research Unit, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
| |
Collapse
|
2
|
Ciavattone NG, Bevoor A, Farfel A, Rehman A, Ho KKY, Rock EC, Chen YC, Luker KE, Humphries BA, Luker GD. Inhibiting CXCR4 reduces immunosuppressive effects of myeloid cells in breast cancer immunotherapy. Sci Rep 2025; 15:5204. [PMID: 39939722 PMCID: PMC11822021 DOI: 10.1038/s41598-025-89882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/14/2025] Open
Abstract
Patients with triple negative breast cancer (TNBC) show only modest response rates to immune checkpoint inhibitor immunotherapy, motivating ongoing efforts to identify approaches to boost efficacy. Using an immunocompetent mouse model of TNBC, we investigated combination therapy with an anti-PD-1 immunotherapy antibody plus balixafortide, a cyclic peptide inhibitor of CXCR4. Cell-based assays demonstrated that balixafortide functions as an inverse agonist, establishing a mode of action distinct from most compounds targeting CXCR4. Combination anti-PD-1 plus balixafortide significantly reduced growth of orthotopic tumors and extended overall survival relative to single agent therapy or vehicle. Adding balixafortide to anti-PD-1 increased numbers of tertiary lymphoid structures, a marker of local tumor immune responses associated with favorable response to immunotherapy in TNBC. Single cell RNA sequencing revealed that combination anti-PD-1 plus balixafortide reduced T cell exhaustion and increased markers of effector T cell activity. Combination therapy also reduced signatures of immunosuppressive myeloid derived suppressor cells (MDSCs) in tumors. MDSCs isolated from mice treated with anti-PD-1 plus balixafortide showed reduced inhibition of T cell proliferation following ex vivo stimulation. These studies demonstrate that combining inhibition of CXCR4 with anti-PD-1 to enhances responses to checkpoint inhibitor immunotherapy in TNBC, supporting future clinical trials.
Collapse
Affiliation(s)
- Nicholas G Ciavattone
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Avinash Bevoor
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Alex Farfel
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Aasia Rehman
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Kenneth K Y Ho
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Edwin C Rock
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Brock A Humphries
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA.
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Gary D Luker
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Tang J, Wei W, Xu Y, Chen K, Miao Y, Fan W, Huang Z, Liu J, Chen P, Luo H, Wang L. CXC chemokine receptor 4 - mediated immune modulation and tumor microenvironment heterogeneity in gastric cancer: Utilizing multi-omics approaches to identify potential therapeutic targets. Biofactors 2025; 51:e2130. [PMID: 39431668 DOI: 10.1002/biof.2130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
G-protein-coupled receptors (GPRs) are critical regulators of various biological behaviors, and their role in gastric cancer (GC) progression is gaining increasing attention. Among them, the immune regulatory mechanisms mediated by chemokine receptor 4 (CXCR4) remain insufficiently understood. This study aims to explore the immune regulatory functions of CXCR4 and the heterogeneity of the tumor microenvironment (TME) by examining GPR-related gene expression in GC. Through multi-omics approaches, including spatial transcriptomics and single-cell RNA sequencing, we investigated the oncogenic mechanisms of CXCR4, particularly its role in T cell immune exhaustion. In vitro experiments, including ELISA, PCR, CCK8 assays, cell scratch assays, and colony formation assays, were used to validate the role of CXCR4 in the migration and invasion of AGS and SNU-1 cell lines. CXCR4 silencing using siRNA further demonstrated its regulatory effects on these cellular processes. Our results revealed a strong correlation between elevated CXCR4 expression and increased exhaustion of regulatory T cells (Tregs) in the TME. Furthermore, heightened CXCR4 expression was linked to increased TME heterogeneity, driven by oxidative stress and activation of the NF-κB pathway, promoting immune evasion and tumor progression. Silencing CXCR4 significantly inhibited the invasive and proliferative abilities of AGS and SNU-1 cells, while also reducing the expression of pro-inflammatory cytokines IL-1β and interleukin-6, thus alleviating chronic inflammation and improving TME conditions. In conclusion, our comprehensive investigation highlights CXCR4 as a key mediator of TME dynamics and immune modulation in GC. Targeting CXCR4 presents a promising therapeutic strategy to slow tumor progression by reducing Tregs-mediated immune exhaustion and TME heterogeneity, positioning it as a novel therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Jing Tang
- Department of Gastroenterology, Guangyuan Central Hospital, Guangyuan, China
| | - Wei Wei
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yaoqing Xu
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Kexin Chen
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaping Miao
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Weining Fan
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhi Huang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Ping Chen
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Honghao Luo
- Department of Radiology, Xichong People's Hospital, Nanchong, China
| | - Lexin Wang
- Department of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Hadebe B, Harry L, Gabela L, Masikane S, Patel M, Zwane S, Pillay V, Bipath P, Cebekhulu N, Nyakale N, Ramdass P, Msimang M, Aldous C, Sathekge M, Vorster M. Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer-A Comparison with 18F-FDG and CXCR4 Immunohistochemistry. Diagnostics (Basel) 2024; 14:1375. [PMID: 39001265 PMCID: PMC11240717 DOI: 10.3390/diagnostics14131375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is common, and its incidence is increasing, particularly in HIV-infected individuals who present with more aggressive disease. Despite aggressive treatment, the prognosis remains poor because of resistance to chemoradiation therapy. So far, studies report very low [68Ga]Ga-Pentixafor avidity in HNSCC. This study investigated the diagnostic performance of CXCR4-directed imaging of carcinoma of the oral cavity, oropharynx, and nasopharynx with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Ga-Pentixafor and explored its ability to quantify CXCR4 expression in vivo. MATERIALS AND METHODS In this prospective cross-sectional study, twenty-three (23) patients aged 52.9 ± 10.4 (19.6), 17 males and 6 females with primarily diagnosed (n = 17) or pre-treated (n = 6) SCC of the oral cavity (OCSCC, n = 11), oropharynx (OPSCC, n = 9), nasopharynx (NPSCC, n = 2) and unknown primary (n = 1) underwent imaging with [68Ga]Ga-Pentixafor-PET/CT. In 16/23 patients 2-[18F]fluoro-2-deoxy-D-glucose ([18F]F-FDG) served as a standard reference. All lesions were visually rated using a 5-point Likert scale. For both tracers, maximum standardized uptake values (SUVmax) and the total lesion uptake (TLU) were recorded and compared using the Wilcox-signed rank test. In addition, the tumor-to-background ratios were derived using the liver (TLR), spleen (TSR), and posterior cervical muscles (TMR) as background. The relationships between the SUVs of the two tracers were assessed using the Spearman correlation. CXCR4 immunohistochemistry (IHC) staining was correlated with 68Ga-Pentixafor-PET/CT in 21/23 patients. RESULTS Ninety-one percent (21/23) of tumors were visually detected on [68Ga]Ga-Pentixafor; however, [68Ga]Ga-Pentixafor was less intense compared with [18F]F-FDG-PET. Quantitative analysis showed higher [18F]F-FDG SUVmax in comparison with [68Ga]Ga-Pentixafor (16 ± 6.7 vs. 5.8 ± 2.6 g/mL, p = 0.011) and SUVmean (9.3 ± 4.1 vs. 3± 1.6 g/mL, p < 0.001) and TBR 4.9 ± 2.3 vs. 2.36 ± 1.4 p = 0.014. Nasopharyngeal cancer demonstrated more intense tracer accumulation than oropharyngeal and oral cavity malignancies. CXCR4 IHC staining was positive in 15/21 patients, and there was a statistically significant correlation between IHC staining and [68Ga]Ga-Pentixafor SUVmean r = 0.5 p = 0.027, and performance status r = 0.83 p = 0.0104. CONCLUSIONS In conclusion, although [68Ga]Ga-Pentixafor cannot replace [18F]F-FDG as a diagnostic tool because of its lower avidity, the correlation between CXCR4 targeted 68Ga-Pentixafor PET imaging and CXCR4 IHC staining indicates the potential of 68Ga-Pentixafor as an effective tool for selecting patients who may benefit from therapies targeting CXCR4. In addition, [68Ga]Ga-Pentixafor has no physiological brown fat uptake, which often obscures cervical lesions on [18F]F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Bawinile Hadebe
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Lerwine Harry
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Lerato Gabela
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Siphelele Masikane
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Maryam Patel
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Sizwe Zwane
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Venesen Pillay
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Presha Bipath
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Radiation Oncology, College of Health Sciences, University of KwaZulu Natal, Private Bag X03, Durban 4001, South Africa
| | - Nonhlanhla Cebekhulu
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Radiation Oncology, College of Health Sciences, University of KwaZulu Natal, Private Bag X03, Durban 4001, South Africa
| | - Nozipho Nyakale
- Department of Nuclear Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| | - Prathima Ramdass
- Department of Nuclear Medicine, Jawaharlal Nehru Hospital, Rose Belle 51829, Mauritius
| | - Mpumelelo Msimang
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Anatomical Pathology, National Health Laboratory Service, Durban 4000, South Africa
| | - Colleen Aldous
- Department of Genetics, College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| |
Collapse
|
6
|
Zheng H, Haroon K, Liu M, Hu X, Xu Q, Tang Y, Wang Y, Yang GY, Zhang Z. Monomeric CXCL12-Engineered Adipose-Derived Stem Cells Transplantation for the Treatment of Ischemic Stroke. Int J Mol Sci 2024; 25:792. [PMID: 38255866 PMCID: PMC10815250 DOI: 10.3390/ijms25020792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.
Collapse
Affiliation(s)
- Haoran Zheng
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Khan Haroon
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Mengdi Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Xiaowen Hu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Qun Xu
- Health Management Center, Department of Neurology, Renji Hospital of Medical School of Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Yongting Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (H.Z.); (K.H.); (M.L.); (X.H.); (Y.T.); (Y.W.)
| |
Collapse
|
7
|
Oh K, Yoo YJ, Torre-Healy LA, Rao M, Fassler D, Wang P, Caponegro M, Gao M, Kim J, Sasson A, Georgakis G, Powers S, Moffitt RA. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat Commun 2023; 14:5226. [PMID: 37633924 PMCID: PMC10460409 DOI: 10.1038/s41467-023-40895-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Bulk analyses of pancreatic ductal adenocarcinoma (PDAC) samples are complicated by the tumor microenvironment (TME), i.e. signals from fibroblasts, endocrine, exocrine, and immune cells. Despite this, we and others have established tumor and stroma subtypes with prognostic significance. However, understanding of underlying signals driving distinct immune and stromal landscapes is still incomplete. Here we integrate 92 single cell RNA-seq samples from seven independent studies to build a reproducible PDAC atlas with a focus on tumor-TME interdependence. Patients with activated stroma are synonymous with higher myofibroblastic and immunogenic fibroblasts, and furthermore show increased M2-like macrophages and regulatory T-cells. Contrastingly, patients with 'normal' stroma show M1-like recruitment, elevated effector and exhausted T-cells. To aid interoperability of future studies, we provide a pretrained cell type classifier and an atlas of subtype-based signaling factors that we also validate in mouse data. Ultimately, this work leverages the heterogeneity among single-cell studies to create a comprehensive view of the orchestra of signaling interactions governing PDAC.
Collapse
Affiliation(s)
- Ki Oh
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Yun Jae Yoo
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Luke A Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Manisha Rao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Danielle Fassler
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Caponegro
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Mei Gao
- Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA
| | - Joseph Kim
- Department of Surgery, University of Kentucky and Markey Cancer Center, Lexington, KY, USA
| | - Aaron Sasson
- Department of Surgery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Georgios Georgakis
- Department of Surgery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
9
|
Iurchenko NP, Nesina IP, Glushchenko NМ, Buchynska LG. ROLE OF STROMAL MICROENVIRONMENT IN THE FORMATION OF INVASIVE, ANGIOGENIC, AND METASTATIC POTENTIAL OF ENDOMETRIOID CARCINOMA OF ENDOMETRIUM. Exp Oncol 2023; 45:51-61. [PMID: 37417282 DOI: 10.15407/exp-oncology.2023.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
The aim of the study was to determine the association of indicators of the progression of endometrioid carcinoma of the endometrium (ECE) with the type of stromal microenvironment, the counts of CXCL12+ fibroblasts and CD163+ macrophages, and the expression of the chemokine CXCL12 and its receptor CXCR4 in tumor cells. MATERIALS AND METHODS Histological preparations of ECE samples (n = 51) were analyzed. Expression of CXCL2 and CXCR4 antigens in tumor cells, the content of CXCL12+ fibroblasts and CD163+ macrophages, and the density of microvessels were determined by the immunohistochemical method. RESULTS Groups of ECE with desmoplastic and inflammatory stromal reactions were delineated. The majority (80.0%) of tumors with desmoplasia were of low differentiation grade, deeply invading the myometrium; 65.0% of patients with these tumors were at stage III of the disease. In ECE cases of stages I-II, 77.4% of ECE showed an inflammatory type of stroma. The high angiogenic and invasive potential of EC of stages I-II was associated with an inflammatory stromal type, high counts of CD163+ macrophages and CXCL12+ fibroblasts in the tumor microenvironment, high expression of the chemokine receptor CXCR4, and reduced expression of its ligand CXCL12 in tumor cells. In the majority of EC of stage III, the increase in angiogenic, invasive, and metastatic potential was accompanied by the presence of desmoplastic stroma, increased expression of CXCR4 in tumor cells, and a high count of CXCL12+ fibroblasts. CONCLUSIONS The obtained results showed that the morphological architecture of the stromal ECE component is related to the molecular features of its constituents and tumor cells. Their interaction modulates the phenotypic characteristics of ECE associated with the degree of malignancy.
Collapse
Affiliation(s)
- N P Iurchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - I P Nesina
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - N М Glushchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - L G Buchynska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| |
Collapse
|
10
|
Cao J, Chow L, Dow S. Strategies to overcome myeloid cell induced immune suppression in the tumor microenvironment. Front Oncol 2023; 13:1116016. [PMID: 37114134 PMCID: PMC10126309 DOI: 10.3389/fonc.2023.1116016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer progression and metastasis due to tumor immune evasion and drug resistance is strongly associated with immune suppressive cellular responses, particularly in the case of metastatic tumors. The myeloid cell component plays a key role within the tumor microenvironment (TME) and disrupts both adaptive and innate immune cell responses leading to loss of tumor control. Therefore, strategies to eliminate or modulate the myeloid cell compartment of the TME are increasingly attractive to non-specifically increase anti-tumoral immunity and enhance existing immunotherapies. This review covers current strategies targeting myeloid suppressor cells in the TME to enhance anti-tumoral immunity, including strategies that target chemokine receptors to deplete selected immune suppressive myeloid cells and relieve the inhibition imposed on the effector arms of adaptive immunity. Remodeling the TME can in turn improve the activity of other immunotherapies such as checkpoint blockade and adoptive T cell therapies in immunologically "cold" tumors. When possible, in this review, we have provided evidence and outcomes from recent or current clinical trials evaluating the effectiveness of the specific strategies used to target myeloid cells in the TME. The review seeks to provide a broad overview of how myeloid cell targeting can become a key foundational approach to an overall strategy for improving tumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jennifer Cao
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Ho KKY, Srivastava S, Kinnunen PC, Garikipati K, Luker GD, Luker KE. Oscillatory ERK Signaling and Morphology Determine Heterogeneity of Breast Cancer Cell Chemotaxis via MEK-ERK and p38-MAPK Signaling Pathways. Bioengineering (Basel) 2023; 10:bioengineering10020269. [PMID: 36829763 PMCID: PMC9952091 DOI: 10.3390/bioengineering10020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Chemotaxis, regulated by oscillatory signals, drives critical processes in cancer metastasis. Crucial chemoattractant molecules in breast cancer, CXCL12 and EGF, drive the activation of ERK and Akt. Regulated by feedback and crosstalk mechanisms, oscillatory signals in ERK and Akt control resultant changes in cell morphology and chemotaxis. While commonly studied at the population scale, metastasis arises from small numbers of cells that successfully disseminate, underscoring the need to analyze processes that cancer cells use to connect oscillatory signaling to chemotaxis at single-cell resolution. Furthermore, little is known about how to successfully target fast-migrating cells to block metastasis. We investigated to what extent oscillatory networks in single cells associate with heterogeneous chemotactic responses and how targeted inhibitors block signaling processes in chemotaxis. We integrated live, single-cell imaging with time-dependent data processing to discover oscillatory signal processes defining heterogeneous chemotactic responses. We identified that short ERK and Akt waves, regulated by MEK-ERK and p38-MAPK signaling pathways, determine the heterogeneous random migration of cancer cells. By comparison, long ERK waves and the morphological changes regulated by MEK-ERK signaling, determine heterogeneous directed motion. This study indicates that treatments against chemotaxis in consider must interrupt oscillatory signaling.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siddhartha Srivastava
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick C. Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna Garikipati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| | - Kathryn E. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| |
Collapse
|
12
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
13
|
Yang K, Xie Q, Tang T, Zhao N, Liang J, Shen Y, Li Z, Liu B, Chen J, Cheng W, Bai X, Zhang P, Liu Q, Song B, Hu C, Liu L, Wang Y. Astragaloside IV as a novel CXCR4 antagonist alleviates osteoarthritis in the knee of monosodium iodoacetate-induced rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154506. [PMID: 36403512 DOI: 10.1016/j.phymed.2022.154506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE C-X-C chemokine receptor type 4 (CXCR4) inhibition protects cartilage in osteoarthritis (OA) animal models. Therefore, CXCR4 has becoming a novel target for OA drug development. Since dietary and herbal supplements have been widely used for joint health, we hypothesized that some supplements exhibit protective effects on OA cartilage through inhibiting CXCR4 signaling. METHODS The single-cell RNA sequencing data of OA patients (GSE152805) was re-analyzed by Scanpy 1.9.0. The docking screening of CXCR4 antagonists was conducted by Autodock Vina 1.2.0. The CXCR4 antagonistic activity was evaluated by calcium response in THP-1 cells. Signaling pathway study was conducted by bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. The anti-OA activity was evaluated in monosodium iodoacetate (MIA)-induced rats. RESULTS Astragaloside IV (ASN IV), the predominate phytochemical in Astragalus membranaceus, has been identified as a novel CXCR4 antagonist. ASN IV reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes through blocking Akt signaling pathway. Furthermore, ASN IV administration significantly repaired the damaged cartilage and subchondral bone in MIA-induced rats. CONCLUSION The blockade of CXCR4 signaling by ASN IV could explain anti-OA activities of Astragalus membranaceus by protection of cartilage degradation in OA patients. Since ASN IV as an antiviral has been approved by China National Medical Products Administration for testing in people, repurposing of ASN IV as a joint protective agent might be a promising strategy for OA drug development.
Collapse
Affiliation(s)
- Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tingting Tang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Na Zhao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanni Shen
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Li
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ben Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhai Chen
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xueling Bai
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Song
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Stuckel AJ, Khare T, Bissonnette M, Khare S. Aberrant regulation of CXCR4 in cancer via deviant microRNA-targeted interactions. Epigenetics 2022; 17:2318-2331. [PMID: 36047714 PMCID: PMC9665135 DOI: 10.1080/15592294.2022.2118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
CXCR4 is involved in many facets of cancer, including being a major player in establishing metastasis. This is in part due to the deregulation of CXCR4, which can be attributed to many genetic and epigenetic mechanisms, including aberrant microRNA-CXCR4 interaction. MicroRNAs (miRNAs) are a type of small non-coding RNA that primarily targets the 3' UTR of mRNA transcripts, which in turn suppresses mRNA and subsequent protein expression. In this review, we reported and characterized the many aberrant miRNA-CXCR4 interactions that occur throughout human cancers. In particular, we reported known target sequences located on the 3' UTR of CXCR4 transcripts that tumour suppressor miRNAs bind and therefore regulate expression by. From these aberrant interactions, we also documented affected downstream genes/pathways and whether a particular tumour suppressor miRNA was reported as a prognostic marker in its respected cancer type. In addition, a limited number of cancer-causing miRNAs coined 'oncomirs' were reported and described in relation to CXCR4 regulation. Moreover, the mechanisms underlying both tumour suppressor and oncomir deregulations concerning CXCR4 expression were also explored. Furthermore, the miR-146a-CXCR4 axis was delineated in oncoviral infected endothelial cells in the context of virus-causing cancers. Lastly, miRNA-driven therapies and CXCR4 antagonist drugs were discussed as potential future treatment options in reported cancers pertaining to deregulated miRNA-CXCR4 interactions.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Il60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri65201, USA
| |
Collapse
|
15
|
Targeting CXCR4 and CD47 Receptors: An Overview of New and Old Molecules for a Biological Personalized Anticancer Therapy. Int J Mol Sci 2022; 23:ijms232012499. [PMID: 36293358 PMCID: PMC9604048 DOI: 10.3390/ijms232012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Biological therapy, with its multifaceted applications, has revolutionized the treatment of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors. We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion proteins against CD47, the receptor that acts as a “do not eat me” signal to phagocytes escaping immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47 surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential. These results suggest that a combination of different therapeutic approaches has more beneficial effects on patients’ survival and may pave the way for new accomplishments in personalized anticancer therapy.
Collapse
|
16
|
Abstract
The epidermal growth factor (EGF) system has allowed chemists, biologists, and clinicians to improve our understanding of cell production and cancer therapy. The discovery of EGF led to the recognition of cell surface receptors capable of controlling the proliferation and survival of cells. The detailed structures of the EGF-like ligand and the responses of their receptors (EGFR-family) has revealed the conformational and aggregation changes whereby ligands activate the intracellular kinase domains. Biophysical analysis has revealed the preformed clustering of different EGFR-family members and the processes which occur on ligand binding. Understanding these receptor activation processes and the consequential cytoplasmic signaling has allowed the development of inhibitors which are revolutionizing cancer therapy. This Review describes the recent progress in our understanding of the activation of the EGFR-family, the effects of signaling from the EGFR-family on cell proliferation, and the targeting of the EGFR-family in cancer treatment.
Collapse
Affiliation(s)
- Antony W Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville3050, Australia.,Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne3052, Australia.,The Brain Cancer Centre at WEHI, Parkville3052, Australia
| |
Collapse
|
17
|
Burgess AW. Regulation of Signaling from the Epidermal Growth Factor Family. THE JOURNAL OF PHYSICAL CHEMISTRY C 2022. [DOI: 10.1021/acs.jpcc.2c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Antony W. Burgess
- Honorary Laboratory Head, Personalized Oncology Division, WEHI, Parkville 3050, Australia
- Professor Emeritus, Departments of Medical Biology and Surgery (Royal Melbourne Hospital), University of Melbourne, Melbourne 3052, Australia
- The Brain Cancer Centre at WEHI, Parkville 3052, Australia
| |
Collapse
|
18
|
The CXCL12/CXCR4/ACKR3 Signaling Axis Regulates PKM2 and Glycolysis. Cells 2022; 11:cells11111775. [PMID: 35681470 PMCID: PMC9179862 DOI: 10.3390/cells11111775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In response to CXCL12, CXCR4 and ACKR3 both recruit β-arrestin 2, regulating the assembly of interacting proteins that drive signaling and contribute to the functions of both receptors in cancer and multiple other diseases. A prior proteomics study revealed that β-arrestin 2 scaffolds pyruvate kinase M2 (PKM2), an enzyme implicated in shifting cells to glycolytic metabolism and poor prognosis in cancer. We hypothesized that CXCL12 signaling regulates PKM2 protein interactions, oligomerization, and glucose metabolism. We used luciferase complementation in cell-based assays and a tumor xenograft model of breast cancer in NSG mice to quantify how CXCR4 and ACKR3 change protein interactions in the β-arrestin-ERK-PKM2 pathway. We also used mass spectrometry to analyze the effects of CXCL12 on glucose metabolism. CXCL12 signaling through CXCR4 and ACKR3 stimulated protein interactions among β-arrestin 2, PKM2, ERK2, and each receptor, leading to the dissociation of PKM2 from β-arrestin 2. The activation of both receptors reduced the oligomerization of PKM2, reflecting a shift from tetramers to dimers or monomers with low enzymatic activity. Mass spectrometry with isotopically labeled glucose showed that CXCL12 signaling increased intermediate metabolites in glycolysis and the pentose phosphate pathway, with ACKR3 mediating greater effects. These data establish how CXCL12 signaling regulates PKM2 and reprograms cellular metabolism.
Collapse
|
19
|
A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14040887. [PMID: 35456719 PMCID: PMC9032726 DOI: 10.3390/pharmaceutics14040887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Loco-regional recurrences and metastasis represent the leading causes of death in head and neck squamous cell carcinoma (HNSCC) patients, highlighting the need for novel therapies. Chemokine receptor 4 (CXCR4) has been related to loco-regional and distant recurrence and worse patient prognosis. In this regard, we developed a novel protein nanoparticle, T22-DITOX-H6, aiming to selectively deliver the diphtheria toxin cytotoxic domain to CXCR4+ HNSCC cells. The antimetastatic effect of T22-DITOX-H6 was evaluated in vivo in an orthotopic mouse model. IVIS imaging system was utilized to assess the metastatic dissemination in the mouse model. Immunohistochemistry and histopathological analyses were used to study the CXCR4 expression in the cancer cells, to evaluate the effect of the nanotoxin treatment, and its potential off-target toxicity. In this study, we report that CXCR4+ cancer cells were present in the invasive tumor front in an orthotopic mouse model. Upon repeated T22-DITOX-H6 administration, the number of CXCR4+ cancer cells was significantly reduced. Similarly, nanotoxin treatment effectively blocked regional and distant metastatic dissemination in the absence of systemic toxicity in the metastatic HNSCC mouse model. The repeated administration of T22-DITOX-H6 clearly abrogates tumor invasiveness and metastatic dissemination without inducing any off-target toxicity. Thus, T22-DITOX-H6 holds great promise for the treatment of CXCR4+ HNSCC patients presenting worse prognosis.
Collapse
|
20
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic Regulation of CXCR4 Signaling in Cancer Pathogenesis and Progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
21
|
Synthesis and Anti-HIV Activity of a Novel Series of Isoquinoline-Based CXCR4 Antagonists. Molecules 2021; 26:molecules26206297. [PMID: 34684878 PMCID: PMC8539250 DOI: 10.3390/molecules26206297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
An expansion of the structure–activity relationship study of CXCR4 antagonists led to the synthesis of a series of isoquinolines, bearing a tetrahydroquinoline or a 3-methylpyridinyl moiety as head group. All compounds were investigated for CXCR4 affinity and antagonism in competition binding and calcium mobilization assays, respectively. In addition, the anti-HIV activity of all analogues was determined. All compounds showed excellent activity, with compound 24c being the most promising one, since it displayed consistently low nanomolar activity in the various assays.
Collapse
|
22
|
CXCR4-CCR7 Heterodimerization Is a Driver of Breast Cancer Progression. Life (Basel) 2021; 11:life11101049. [PMID: 34685420 PMCID: PMC8538406 DOI: 10.3390/life11101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
Metastatic breast cancer has one of the highest mortality rates among women in western society. Chemokine receptors CXCR4 and CCR7 have been shown to be linked to the metastatic spread of breast cancer, however, their precise function and underlying molecular pathways leading to the acquisition of the pro-metastatic properties remain poorly understood. We demonstrate here that the CXCR4 and CCR7 receptor ligands, CXCL12 and CCL19, cooperatively bind and selectively elicit synergistic signalling responses in invasive breast cancer cell lines as well as primary mammary human tumour cells. Furthermore, for the first time, we have documented the presence of CXCR4-CCR7 heterodimers in advanced primary mammary mouse and human tumours where number of CXCR4-CCR7 complexes directly correlate with the severity of the disease. The functional significance of the CXCR4-CCR7 association was also demonstrated when their forced heterodimerization led to the acquisition of invasive phenotype in non-metastatic breast cancer cells. Taken together, our data establish the CXCR4-CCR7 receptor complex as a new functional unit, which is responsible for the acquisition of breast cancer cell metastatic phenotype and which may serve as a novel biomarker for invasive mammary tumours.
Collapse
|
23
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G, Scala S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11:591386. [PMID: 33937018 PMCID: PMC8082172 DOI: 10.3389/fonc.2021.591386] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Sara Santagata
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Caterina Ieranò
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Capiluongo
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Federica Auletta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe Guardascione
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| |
Collapse
|