1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Chen Y, Zhang Y, Huang A, Gong Y, Wang W, Pan J, Jin Y. A diagnostic biomarker of acid glycoprotein 1 for distinguishing malignant from benign pulmonary lesions. Int J Biol Markers 2023; 38:167-173. [PMID: 37654207 DOI: 10.1177/03936155231192672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND The acid glycoprotein 1 (AGP1) is downregulated in lung cancer. However, the performance of AGP1 in distinguishing benign from malignant lung lesions is still unknown. METHODS The expression of AGP1 in benign diseases and lung cancer samples was detected by Western blot. The receiver operating characteristic curves, bivariate correlation, and multivariate analysis was analyzed by SPSS software. RESULTS AGP1 expression levels were significantly downregulated in lung cancer and correlated with carcinoembryonic antigen (CEA), CA199, and CA724 tumor biomarkers. The diagnostic performance of AGP1 for distinguishing malignant from benign pulmonary lesions was better than the other four clinical biomarkers including CEA, squamous cell carcinoma-associated antigen, neuron-specific enolase, and cytokeratin 19 fragment 21-1, with an area under the curve value of 0.713 at 88.8% sensitivity. Furthermore, the multivariate analysis indicated that the variates of thrombin time and potassium significantly affected the AGP1 levels in lung cancer. CONCLUSIONS Our study indicates that AGP1 expression is decreased in lung cancer compared to benign samples, which helps distinguish benign and malignant pulmonary lesions.
Collapse
Affiliation(s)
- Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Ankang Huang
- Cardiothoracic surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Yongsheng Gong
- Cardiothoracic surgery, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
3
|
Lee SH, Cho S, Lee JY, Hong JY, Kim S, Jeong MH, Kim WH. Identification of Potential Drug Targets for Antiplatelet Therapy Specifically Targeting Platelets of Old Individuals through Proteomic Analysis. Biomedicines 2023; 11:2944. [PMID: 38001945 PMCID: PMC10669211 DOI: 10.3390/biomedicines11112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a growing problem worldwide, and the prevalence and mortality of arterial and venous thromboembolism (VTE) are higher in the elderly than in the young population. To address this issue, various anticoagulants have been used. However, no evidence can confirm that antithrombotic agents are suitable for the elderly. Therefore, this study aims to investigate the platelet proteome of aged mice and identify antithrombotic drug targets specific to the elderly. Based on the proteome analysis of platelets from aged mice, 308 increased or decreased proteins were identified. Among these proteins, three targets were selected as potential antithrombotic drug targets. These targets are membrane proteins or related to platelet function and include beta-2-glycoprotein 1 (β2GP1, ApolipoproteinH (ApoH)), alpha-1-acid glycoprotein2 (AGP2, Orosomucoid-2 (Orm2)), and Ras-related protein (Rab11a).
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| | | | | | | | | | | | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea; (S.C.)
| |
Collapse
|
4
|
Letson HL, Morris JL, Dobson GP. Changes in plasma alpha-1 acid glycoprotein following hemorrhagic trauma: Possible role in dose differences of ALM drug therapy in rat and pig resuscitation. Pharmacol Res Perspect 2023; 11:e01133. [PMID: 37643751 PMCID: PMC10465298 DOI: 10.1002/prp2.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION The binding of drugs to plasma proteins is an important consideration in drug development. We have reported that the dose of adenosine, lidocaine, and magnesium (ALM) fluid therapy for resuscitation from hemorrhagic shock is nearly 3-times higher for pigs than rats. Since lidocaine strongly binds to serum alpha-1-acid glycoprotein (AGP), the aim of the study was to investigate the effect of hemorrhagic shock on levels of AGP in rats and pigs. MATERIALS AND METHODS Healthy adult male Sprague-Dawley rats and female crossbred pigs (n = 33 each) underwent tail vein and peripheral ear vein blood sampling, respectively, to collect plasma for AGP measurements. Rats (n = 17) and pigs (n = 16) underwent surgical instrumentation and uncontrolled hemorrhage via liver resection, and were treated with 3% NaCl ± ALM IV bolus followed 60 min later by 4 h 0.9% NaCl ± ALM IV drip. Rats were monitored for 72 h with blood samples taken post-surgery, and at 5.25, 24, and 72 h. Pigs were monitored for 6 h with blood samples taken post-surgery, and at 60 min and 6 h. Plasma AGP was measured with rat- and pig-specific enzyme-linked immunosorbent assay kits. RESULTS Baseline AGP levels in rats were 3.91 μg/mL and significantly 83-fold lower than in pigs (325 μg/mL). Surgical instrumentation was associated with ~10-fold increases in AGP in rats and a 21% fall in pigs. AGP levels remained elevated in rats after hemorrhage and resuscitation (28-29 μg/mL). In contrast, no significant differences in plasma AGP were found in ALM- or Saline-treated pigs over the monitoring period. CONCLUSIONS We conclude that the trauma of surgery alone was associated with significant increases in AGP in rats, compared to a contrasting decrease in pigs. Higher levels of plasma AGP in pigs prior to hemorrhagic shock is consistent with the higher ALM doses required to resuscitate pigs compared with rats.
Collapse
Affiliation(s)
- Hayley L. Letson
- Heart and Trauma Research Laboratory, College of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jodie L. Morris
- Heart and Trauma Research Laboratory, College of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and DentistryJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
5
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 PMCID: PMC10060418 DOI: 10.1038/s41419-023-05733-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
6
|
Hu M, Zhang R, Yang J, Zhao C, Liu W, Huang Y, Lyu H, Xiao S, Guo D, Zhou C, Tang J. The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death Dis 2023; 14:222. [PMID: 36990999 DOI: 10.1038/s41419-023-05733-z.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 10/14/2024]
Abstract
N-glycosylation is one of the most common types of protein modifications and it plays a vital role in normal physiological processes. However, aberrant N-glycan modifications are closely associated with the pathogenesis of diverse diseases, including processes such as malignant transformation and tumor progression. It is known that the N-glycan conformation of the associated glycoproteins is altered during different stages of hepatocarcinogenesis. Characterizing the heterogeneity and biological functions of glycans in liver cancer patients will facilitate a deeper understanding of the molecular mechanisms of liver injury and hepatocarcinogenesis. In this article, we review the role of N-glycosylation in hepatocarcinogenesis, focusing on epithelial-mesenchymal transition, extracellular matrix changes, and tumor microenvironment formation. We highlight the role of N-glycosylation in the pathogenesis of liver cancer and its potential applications in the treatment or diagnosis of liver cancer.
Collapse
Affiliation(s)
- Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiaren Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chenshu Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Wei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
7
|
Crookenden MA, Burke CR, Mitchell MD, Phyn CVC, Roche JR, Heiser A. Effect of nonsteroidal anti-inflammatory drugs on the inflammatory response of bovine endometrial epithelial cells in vitro. J Dairy Sci 2023; 106:2651-2666. [PMID: 36653292 DOI: 10.3168/jds.2021-21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/30/2022] [Indexed: 01/19/2023]
Abstract
Chronic postpartum uterine infection detrimentally affects subsequent fertility. Nonsteroidal anti-inflammatory drugs (NSAID) are used to alleviate pain and treat inflammatory conditions in transition dairy cows with varying success. To screen the efficacy of NSAID in the absence of animal experiments, we have established an in vitro model to study uterine inflammation. Inflammation was induced in cultured bovine endometrial epithelial cells by challenging cells with an inflammation cocktail: lipopolysaccharide and proinflammatory cytokines, interleukin-1β (IL1β) and tumor necrosis factor α (TNFα). Release of the inflammation markers, serum amyloid A (SAA) and α-1-acid glycoprotein (αAGP), was measured by ELISA. Concentration of these markers was used to indicate the effectiveness in dampening inflammation of 5 NSAID: meloxicam, flunixin meglumine, aspirin, ketoprofen, and tolfenamic acid. Three NSAID, meloxicam, flunixin meglumine, and tolfenamic acid, were successful at dampening the release of SAA and αAGP into cell-culture supernatant, and the corresponding treated cells were selected for down-stream mRNA expression analysis. Expression of 192 genes involved in regulation of inflammatory pathways were investigated using Nanostring. Of the genes investigated, 81 were above the mRNA expression-analysis threshold criteria and were included in expression analysis. All SAA genes investigated (SAA2, SAA3, M-SAA3.2) were upregulated in response to the inflammation cocktail, relative to mRNA expression in control cells; however, AGP mRNA expression was below the expression analysis threshold and was, therefore, excluded from analysis. Treatment with NSAID downregulated genes involved in regulating chemokine signaling (e.g., CXCL2, CXCR4, CXCL5, and CXCL16) and genes that regulate the eicosanoid pathway (e.g., LTA4H, PTGS2, PLA2G4A, and PTGDS). Of the 5 NSAID investigated, meloxicam, flunixin meglumine, and tolfenamic acid are recommended for further investigation into treatment of postpartum uterine inflammation. The results from this study confirm the immunomodulatory properties of the endometrial epithelium in response to inflammatory stimuli and suggest that NSAID may be beneficial in alleviating uterine inflammation.
Collapse
Affiliation(s)
- M A Crookenden
- Hopkirk Research Institute, AgResearch, Palmerston North 4442, New Zealand.
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - M D Mitchell
- Institute of Health and Biomedical Innovation - Centre for Children's Health Research, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4101, Australia
| | - C V C Phyn
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - J R Roche
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - A Heiser
- Hopkirk Research Institute, AgResearch, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|