1
|
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, Liu H. IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep 2024; 43:113835. [PMID: 38412100 DOI: 10.1016/j.celrep.2024.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Interleukin-37 (IL-37) has been shown to inhibit tumor growth in various cancer types. However, the immune regulatory function of IL-37 in the tumor microenvironment is unclear. Here, we established a human leukocyte antigen-I (HLA-I)-matched humanized patient-derived xenograft hepatocellular carcinoma (HCC) model and three murine orthotopic HCC models to study the function of IL-37 in the tumor microenvironment. We found that IL-37 inhibited HCC growth and promoted T cell activation. Further study revealed that IL-37 impaired the immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs). Pretreatment of MDSCs with IL-37 before adoptive transfer attenuated their tumor-promoting function in HCC tumor-bearing mice. Moreover, IL-37 promoted both glycolysis and oxidative phosphorylation in MDSCs, resulting in the upregulation of ATP release, which impaired the immunosuppressive capacity of MDSCs. Collectively, we demonstrated that IL-37 inhibited tumor development through dampening MDSCs' immunosuppressive capacity in the tumor microenvironment via metabolic reprogramming, making it a promising target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Mei
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ying Zhu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore
| | - Zuhairah Binte Hanafi
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P.R. China
| | - Yonghao Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huey Yee Teo
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Muslima Hussain
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Yuan Song
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore.
| | - Haiyan Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
2
|
Cao J, Liu JH, Wise SG, Fan J, Bao S, Zheng GS. The role of IL-36 and 37 in hepatocellular carcinoma. Front Immunol 2024; 15:1281121. [PMID: 38312834 PMCID: PMC10834741 DOI: 10.3389/fimmu.2024.1281121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has garnered considerable attention due to its morbidity and mortality. Although the precise mechanisms underlying HCC tumorigenesis remain to be elucidated, evidence suggests that host immunity plays a pivotal role in its development. IL-36 and IL-37 are important immunoregulatory cytokines classified as pro-inflammatory and anti-inflammatory respectively. In the context of HCC, the downregulation of intrahepatic IL-36 is inversely correlated with cirrhosis, but positively correlated with 5-year survival rates, suggesting that IL-36 offers protection during HCC development. However, IL-36 may lose its hepatoprotective effects as the disease progresses to HCC in the context of dysregulated immunity in cirrhotic patients. Substantially increased circulating IL-36 in HCC patients is likely a systemic response to HCC stimulation, but is insufficient to suppress progression towards HCC. Intrahepatic IL-37 is suppressed in HCC patients, consistent with the inverse correlation between intrahepatic IL-37 and the level of AFP in HCC patients, suggesting IL-37 exerts hepatoprotection. There is no significant difference in IL-37 among differentiations of HCC or with respect to clinical BCLC stages or cirrhosis status in HCC patients. However, IL-37 protection is demonstrated in an IL-37 transfected HCC animal model, showing significantly reduced tumour size. IL-36/37 may inhibit HCC by enhancing M1 tumour-associated macrophages while not affecting M2 macrophages. The interplay between IL-36 (pro-inflammatory) and IL-37 (anti-inflammatory) is emerging as a crucial factor in host protection against the development of HCC. Further research is needed to investigate the complex mechanisms involved and the therapeutic potential of targeting these cytokines in HCC management.
Collapse
Affiliation(s)
- Juan Cao
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun-Hong Liu
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial Integrated Traditional Chinese and Western Medicine Digestive Disease Clinical Research Centre, Lanzhou, China
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jingchun Fan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shisan Bao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gui-Sen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Landolina N, Mariotti FR, Pelosi A, D’Oria V, Ingegnere T, Alicata C, Vacca P, Moretta L, Maggi E. The anti-inflammatory cytokine IL-37 improves the NK cell-mediated anti-tumor response. Oncoimmunology 2023; 13:2297504. [PMID: 38170019 PMCID: PMC10761114 DOI: 10.1080/2162402x.2023.2297504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
IL-37 is a member of the IL-1 superfamily exerting anti-inflammatory functions in a number of diseases. Extracellular IL-37 triggers the inhibitory receptor IL-1R8 that is known to regulate different NK cell pathways and functional activities including their anti-tumor effect. However, the effect of IL-37 on human NK cell functions is still to be unveiled. This study aimed to investigate the functional effect of IL-37 in human NK cells activated with IL-15. We found that IL-37 enhanced both NK cell cytotoxic activity against different tumor cell lines and cytokines production. These effects were associated with increased phosphorylation of ERK and NF-Kb. The improved NK cell activity was also strictly related to a time-dependent GSK3β-mediated degradation of IL-1R8. The enhanced activation profile of IL-37 treated NK cells possibly due to IL-1R8 degradation was confirmed by the results with IL-1R8-silenced NK cells. Lastly, in line with these data, through the analysis of the TNM plot database of a large group of patients, IL-37 mRNA expression was found to be significantly lower in colon and skin cancers than in normal tissues. Colon adenocarcinoma and neuroblastoma patients with higher IL-37 mRNA levels had significantly higher overall survival, suggesting that the presence of IL-37 might be considered an independent positive prognostic factor for this tumor. Our results provide novel information on the mechanisms regulating IL-1R8 function in human NK cells, highlighting the IL-37-IL-1R8 axis as a potential new target to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Nadine Landolina
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
5
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
6
|
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023; 24:ijms24119258. [PMID: 37298214 DOI: 10.3390/ijms24119258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Collapse
Affiliation(s)
- Maria Papasavva
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Styliana Amvrosiou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Panayiota Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Yuan Ji
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
7
|
Mariotti FR, Supino D, Landolina N, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8: A molecular brake of anti-tumor and anti-viral activity of NK cells and ILC. Semin Immunol 2023; 66:101712. [PMID: 36753974 DOI: 10.1016/j.smim.2023.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.
Collapse
Affiliation(s)
- Francesca R Mariotti
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Garlanda
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Science, Humanitas University, 20072 Pieve Emanuele, Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
8
|
Aberrant Expression and Prognostic Potential of IL-37 in Human Lung Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123037. [PMID: 36551790 PMCID: PMC9775426 DOI: 10.3390/biomedicines10123037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin-37 (IL-37) is a relatively new IL-1 family cytokine that, due to its immunoregulatory properties, has lately gained increasing attention in basic and translational biomedical research. Emerging evidence supports the implication of this protein in any human disorder in which immune homeostasis is compromised, including cancer. The aim of this study was to explore the prognostic and/or diagnostic potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) in human tumors. We utilized a series of bioinformatics tools and -omics datasets to unravel possible associations of IL-37 and SIGIRR expression levels and genetic aberrations with tumor development, histopathological parameters, distribution of tumor-infiltrating immune cells, and survival rates of patients. Our data revealed that amongst the 17 human malignancies investigated, IL-37 exhibits higher expression levels in tumors of lung adenocarcinoma (LUAD). Moreover, the expression profiles of IL-37 and SIGIRR are associated with LUAD development and tumor stage, whereas their high mRNA levels are favorable prognostic factors for the overall survival of patients. What is more, IL-37 correlates positively with a LUAD-associated transcriptomic signature, and its nucleotide changes and expression levels are linked with distinct infiltration patterns of certain cell subsets known to control LUAD anti-tumor immune responses. Our data indicate the potential value of IL-37 and its receptor SIGIRR to serve as biomarkers and/or immune-checkpoint therapeutic targets for LUAD patients. Further, the data highlight the urgent need for further exploration of this cytokine and the underlying pathogenetic mechanisms to fully elucidate its implication in LUAD development and progression.
Collapse
|
9
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
10
|
Zhu Y, Qin H, Ye K, Sun C, Qin Y, Li G, Wang H, Wang H. Dual role of IL-37 in the progression of tumors. Cytokine 2021; 150:155760. [PMID: 34800851 DOI: 10.1016/j.cyto.2021.155760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-37 is a novel defined cytokine that belongs to IL-1 family, which possesses potent anti-inflammatory and immunosuppressive properties. The IL-37 protein mainly exists in the cytoplasm of monocytes and is also expressed in epithelial cells and T cells. IL-37 is produced as a precursor which works in mature or immature isoforms without a classic signal peptide, and negatively regulates TLR agonist- mediated signaling pathway, proinflammatory cytokines, and IL-1R ligands. IL-37 has been found to be elevated and plays an anti-tumor role in various types of tumors, such as hepatocellular carcinoma, non-small cell lung cancer, and cervical cancer. The tumor microenvironment (TME) refers to the cellular environment where the tumor or cancer stem cells exist. At present, growing evidence shows that changes in TME can regulate metabolism, immunity, secretion, and function, so as to inhibit or promote the progression of the tumor. Therefore, a thorough understanding of the TME is essential for the occurrence and development of tumors. In this review, we will summarize the role of IL-37 in the microenvironment of different tumors, hoping to provide novel perspectives towards the mechanism, prevention, and treatment of tumors.
Collapse
Affiliation(s)
- Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
11
|
Su Z, Tao X. Current Understanding of IL-37 in Human Health and Disease. Front Immunol 2021; 12:696605. [PMID: 34248996 PMCID: PMC8267878 DOI: 10.3389/fimmu.2021.696605] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
12
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|