1
|
Aimeur S, Fas BA, Serfaty X, Santuz H, Sacquin-Mora S, Bizouarn T, Taly A, Baciou L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J Biol Chem 2024:107943. [PMID: 39481598 DOI: 10.1016/j.jbc.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
Collapse
Affiliation(s)
- Sana Aimeur
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Xavier Serfaty
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
2
|
Liang S, Liu A, Liu Y, Wang F, Zhou Y, Long Y, Wang T, Liu Z, Ren R, Ye RD. Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2. Proc Natl Acad Sci U S A 2024; 121:e2320388121. [PMID: 38805284 PMCID: PMC11161758 DOI: 10.1073/pnas.2320388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.
Collapse
Affiliation(s)
- Shiyu Liang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, Dongguan, Guangdong523326, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangming District, Shenzhen518132, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Youli Zhou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Yuanzhengyang Long
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Tao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangming District, Shenzhen518132, China
- Key Laboratory of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen518055, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong518000, China
| |
Collapse
|
3
|
Miyano K, Okamoto S, Kajikawa M, Kiyohara T, Kawai C, Yamauchi A, Kuribayashi F. Regulation of Derlin-1-mediated degradation of NADPH oxidase partner p22 phox by thiol modification. Redox Biol 2022; 56:102479. [PMID: 36122532 PMCID: PMC9486109 DOI: 10.1016/j.redox.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1–4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1. Missense mutations in exon 3 of p22phox enhance the binding of p22phox to Derlin-1. Oxidation of the thiol group of p22phox Cys50 suppresses p22phox degradation. Serine substitution of Cys-50 increases the affinity of p22phox for Derlin-1. Stability of the p22phox protein is regulated by redox-sensitive Cys-50.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan; Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan.
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
4
|
Bechor E, Zahavi A, Berdichevsky Y, Pick E. The molecular basis of Rac-GTP action-promoting binding of p67 phox to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 2021; 110:219-237. [PMID: 33857329 DOI: 10.1002/jlb.4hi1220-855rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/11/2022] Open
Abstract
p67phox fulfils a key role in the assembly/activation of the NADPH oxidase by direct interaction with Nox2. We proposed that Rac-GTP serves both as a carrier of p67phox to the membrane and an inducer of a conformational change enhancing its affinity for Nox2. This study provides evidence for the latter function: (i) oxidase activation was inhibited by p67phox peptides (106-120) and (181-195), corresponding to the β hairpin and to a downstream region engaged in intramolecular bonds with the β hairpin, respectively; (ii) deletion of residues 181-193 and point mutations Q115R or K181E resulted in selective binding of p67phox to Nox2 peptide (369-383); (iii) both deletion and point mutations led to a change in p67phox , expressed in increased apparent molecular weights; (iv) p67phox was bound to p67phox peptide (181-195) and to a cluster of peptides (residues 97-117), supporting the participation of selected residues within these sequences in intramolecular bonds; (v) p67phox failed to bind to Nox2 peptide (369-383), following interaction with Rac1-GTP, but a (p67phox -Rac1-GTP) chimera exhibited marked binding to the peptide, similar to that of p67phox deletion and point mutants; and (vi) size exclusion chromatography of the chimera revealed its partition in monomeric and polymeric forms, with binding to Nox2 peptide (369-383) restricted to polymers. The molecular basis of Rac-GTP action entails unmasking of a previously hidden Nox2-binding site in p67phox , following disengagement of the β hairpin from more C-terminal residues. The domain in Nox2 binding the "modified" p67phox comprises residues within the 369-383 sequence in the cytosolic dehydrogenase region.
Collapse
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Martínez MA, Úbeda A, Trillo MÁ. Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Electromagn Biol Med 2021; 40:103-116. [PMID: 33345643 DOI: 10.1080/15368378.2020.1851250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
Our previous studies have shown that intermittent exposure to a 50-Hz, 100-µT sine wave magnetic field (MF) promotes human NB69 cell proliferation, mediated by activation of the epidermal growth factor receptor (EGFR) and pathways MAPK-ERK1/2 and p38; being the effects on proliferation and p38 activation blocked by the chelator N-acetylcysteine. The present work investigates the MF effects on free radical (FR) production, and the potential involvement of NADPH oxidase, the main source of reactive oxygen species (ROS), in the MF-induced activation of MAPK pathways. To this end, the field effects on MAPK-ERK1/2, -p38 and -JNK activation in the presence or absence of the NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), as well as the expression of the p67phox subunit, were analyzed. The results revealed that field exposure increases FR production and induces early, transient expression of the cytosolic component of the NADPH oxidase, p67phox. Also, the MF-induced activation of the MAPK-JNK pathway, but not that of -ERK1/2 or -p38 pathways, was prevented in the presence of the DPI, which has been shown to significantly reduce p67phox expression. These data, together with those from previous studies, identify various, FR-dependent or -independent mechanisms, involved in the MF-induced proliferative response mediated by MAPK signaling activation.
Collapse
Affiliation(s)
| | - Alejandro Úbeda
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| | - María Ángeles Trillo
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| |
Collapse
|
6
|
Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol Lett 2020; 221:39-48. [DOI: 10.1016/j.imlet.2020.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
|
7
|
Bechor E, Zahavi A, Amichay M, Fradin T, Federman A, Berdichevsky Y, Pick E. p67phoxbinds to a newly identified site in Nox2 following the disengagement of an intramolecular bond—Canaan sighted? J Leukoc Biol 2020; 107:509-528. [DOI: 10.1002/jlb.4a1219-607r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Maya Amichay
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Tanya Fradin
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Aya Federman
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| |
Collapse
|
8
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
9
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Augsburger F, Filippova A, Rasti D, Seredenina T, Lam M, Maghzal G, Mahiout Z, Jansen-Dürr P, Knaus UG, Doroshow J, Stocker R, Krause KH, Jaquet V. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol 2019; 26:101272. [PMID: 31330481 PMCID: PMC6658998 DOI: 10.1016/j.redox.2019.101272] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/05/2022] Open
Abstract
Background NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O2•-) and/or hydrogen peroxide (H2O2). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action. Experimental approach We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O2•- or H2O2 using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity. Key results Cells expressing active NOX isoforms formed O2•-, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular H2O2. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors. Conclusion Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.
Collapse
Affiliation(s)
- Fiona Augsburger
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Aleksandra Filippova
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Delphine Rasti
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tamara Seredenina
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Magdalena Lam
- St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Ghassan Maghzal
- St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Zahia Mahiout
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research (IBA), University of Innsbruck, Innsbruck, Austria
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
| |
Collapse
|
11
|
Pick E. Using Synthetic Peptides for Exploring Protein-Protein Interactions in the Assembly of the NADPH Oxidase Complex. Methods Mol Biol 2019; 1982:377-415. [PMID: 31172485 DOI: 10.1007/978-1-4939-9424-3_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NADPH oxidase complex, responsible for reactive oxygen species (ROS) generation by phagocytes, consists of a membrane-associated flavocytochrome b 558 (a heterodimer of NOX2 and p22phox) and the cytosolic components p47phox, p67phox, Rac(1 or 2), and p40phox. NOX2 carries all redox stations through which electrons flow from NADPH to molecular oxygen, to generate the primary ROS, superoxide. For the electron flow to start, a conformational change in NOX2 is required. The dominant hypothesis is that this change is the result of the interaction of NOX2 with one or more of the cytosolic components (NADPH oxidase assembly). At the most basic level, assembly is the sum of several protein-protein interactions among oxidase components. This chapter describes a reductionist approach to the identification of regions in oxidase components involved in assembly. This approach consists of "transforming" one component in an array of overlapping synthetic peptides and assessing binding to the peptides of another component, represented by a recombinant protein. The peptides are tagged with biotin, at the N- or C-terminus, and immobilized on streptavidin-coated 96-well plates. The protein partners are expressed with a 6His tag and added to the plates in the fluid phase. Binding of the protein to the peptides is quantified by a kinetic ELISA , using a peroxidase-conjugated anti-polyhistidine antibody. Protein-peptide binding assays were applied successfully to (a) identifying the binding site on one component (represented by peptides) for another component (proteins), (b) precisely defining the "binding sequence," (c) acquiring information on the binding site in the partner protein, (d) investigating the effect of conformational changes in proteins on binding to peptides, (e) determining the effect of physicochemical modification of peptides on binding of proteins, and (f) identifying epitopes recognized by anti-oxidase component antibodies by binding of antibody to peptide arrays derived from the component.
Collapse
Affiliation(s)
- Edgar Pick
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|