1
|
Li Q, Shi X, Huang H, Gao Q, Sun Q, Meng Y, Niu L, Xie C, Yang C. 5β-hydroxycostic acid from Laggera alata ameliorates sepsis-associated acute kidney injury through its anti-inflammatory and anti-ferroptosis effects via NF-κB and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025:119359. [PMID: 39800248 DOI: 10.1016/j.jep.2025.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The whole plant of Laggera alata is frequently utilize to remedy inflammatory diseases including nephritis as a traditional Chinese medicine. However, its active ingredients and mechanism of action against sepsis-associated acute kidney injury (SA-AKI) are unknown. AIM OF THE STUDY This study aimed to identify active compounds from L. alata that inhibit renal inflammation and ameliorate SA-AKI, and to elucidate their mechanisms of action. MATERIALS AND METHODS The chemical constituents were separated from the ethyl acetate layer of L. alata methanol extract by column chromatography over silica gel, medium-pressure liquid chromatography and semipreparative high-performance liquid chromatography. Extensive spectroscopic techniques were applied to determine the chemical structures. The anti-inflammatory efficiency was measured by analyzing the NO production in RAW 264.7 cells. The levels of IL-6, IL-1β, CCL-2 and CCL-5 mRNA were determined by qRT-PCR. Cecal ligation and puncture (CLP) surgery is a frequently applied method to establish the mouse sepsis model. Sepsis was thus induced in mice via CLP. The effect in the treatment of SA-AKI was evaluated by H&E staining and ELISA detection. Western blotting was used to evaluate the protein levels involved in ferroptosis, NF-κB and MAPK signaling pathways. RESULTS Twelve compounds were obtained from L.alata including four unreported sesquiterpenoids (1-4). Compound 5 exhibited the most significant inhibitory effect on NO production with the IC50 value of 6.034 μM and could restrain the mRNA expression of inflammatory factors IL-6, IL-1β, CCL-2 and CCL-5. The in vivo results demonstrated that compound 5 alleviated the renal injury by decreasing the serum IL-6, IL-1β, Cr, and BUN levels, reducing the kidney contents of Cys-C and KIM-1, and regulating the kidney levels of MDA, GSH, ferrous iron, GPX4, FTH1, and SLC7A11. Furthermore, Compound 5 also repressed the NF-κB and MAPK pathways in vitro and in vivo. CONCLUSIONS This study revealed that compound 5 could ameliorate SA-AKI through exerting its anti-inflammatory and anti-ferroptosis effects via NF-κB and MAPK pathways. The current research supported the traditional use of L.alata in the treatment of renal diseases.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Hong Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Qingya Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Yao Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Lihang Niu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| |
Collapse
|
2
|
Hwang N, Ghanta S, Li Q, Lamattina AM, Murzin E, Lederer JA, El-Chemaly S, Chung SW, Liu X, Perrella MA. Carbon monoxide-induced autophagy enhances human mesenchymal stromal cell function via paracrine actions in murine polymicrobial sepsis. Mol Ther 2024; 32:2232-2247. [PMID: 38734903 PMCID: PMC11286814 DOI: 10.1016/j.ymthe.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.
Collapse
Affiliation(s)
- Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ekaterina Murzin
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
lncRNA IGF2-AS Regulates Nucleotide Metabolism by Mediating HMGA1 to Promote Pyroptosis of Endothelial Progenitor Cells in Sepsis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9369035. [PMID: 35082972 PMCID: PMC8786475 DOI: 10.1155/2022/9369035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Background Sepsis is one of the major causes of death worldwide, and its high mortality and pathological complexity hinder early accurate diagnosis. We aimed to investigate lncRNA IGF2-AS and HMGA1 effects on pyroptosis of endothelial progenitor cells (EPCs) in sepsis patients and the mechanisms involved. Methods Blood samples from sepsis patients and healthy subjects were collected, and EPCs were isolated and identified. We constructed cell lines that knocked down lncRNA IGF2-AS, HMGA1, and TYMS. Furthermore, lncRNA IGF2-AS was overexpressed. Subsequently, dNTP treatment with different concentrations was performed to investigate lncRNA IGF2-AS and HMGA1 effects on pyroptosis of EPCs in sepsis patients. Finally, exosomes were isolated from bone marrow mesenchymal stem cells (MSCs) to detect lncRNA IGF2-AS expression, and the influence of MSC-derived exosomal lncRNA IGF2-AS on sepsis was preliminarily discussed. Results Compared with Healthy group, lncRNA IGF2-AS, HMGA1, and TYMS were highly expressed in Sepsis group. Compared with si-NC group, si-lncRNA IGF2-AS group had increased proliferation ability, decreased pyroptosis, decreased HMGA1, RRM2, TK1, and TYMS expressions. lncRNA IGF2-AS played a regulatory role by binding HMGA1. Compared with si-NC group, the proliferation ability of si-HMGA1 group increased, pyroptosis decreased, and RRM2, TK1, and TYMS expressions also decreased. Compared with si-NC group, pyroptosis in si-TYMS group was reduced. In addition, HMGA1 was related and bound to TYMS. After overexpressing lncRNA IGF2-AS, dNTP level decreased, while the proliferation increased and pyroptosis decreased with higher concentration of dNTP. In addition, we found that EPCs took up MSC-exosomes. Compared with supernatant group, lncRNA IGF2-AS was expressed in exosomes group. Compared with EPCs group, EPCs+exosomes group had increased lncRNA IGF2-AS expression and increased pyroptosis. Conclusions lncRNA IGF2-AS regulated nucleotide metabolism by mediating HMGA1 to promote pyroptosis of EPCs in sepsis patients. This study provided important clues for finding new therapeutic targets for sepsis.
Collapse
|
5
|
Kwon M, Ghanta S, Ng J, Castano AP, Han J, Ith B, Lederer JA, El‐Chemaly S, Chung SW, Liu X, Perrella MA. Mesenchymal stromal cells expressing a dominant-negative high mobility group A1 transgene exhibit improved function during sepsis. J Leukoc Biol 2021; 110:711-722. [PMID: 33438259 PMCID: PMC8275698 DOI: 10.1002/jlb.4a0720-424r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
High mobility group (HMG)A proteins are nonhistone chromatin proteins that bind to the minor groove of DNA, interact with transcriptional machinery, and facilitate DNA-directed nuclear processes. HMGA1 has been shown to regulate genes involved with systemic inflammatory processes. We hypothesized that HMGA1 is important in the function of mesenchymal stromal cells (MSCs), which are known to modulate inflammatory responses due to sepsis. To study this process, we harvested MSCs from transgenic (Tg) mice expressing a dominant-negative (dn) form of HMGA1 in mesenchymal cells. MSCs harvested from Tg mice contained the dnHMGA1 transgene, and transgene expression did not change endogenous HMGA1 levels. Immunophenotyping of the cells, along with trilineage differentiation revealed no striking differences between Tg and wild-type (WT) MSCs. However, Tg MSCs growth was decreased compared with WT MSCs, although Tg MSCs were more resistant to oxidative stress-induced death and expressed less IL-6. Tg MSCs administered after the onset of Escherichia coli-induced sepsis maintained their ability to improve survival when given in a single dose, in contrast with WT MSCs. This survival benefit of Tg MSCs was associated with less tissue cell death, and also a reduction in tissue neutrophil infiltration and expression of neutrophil chemokines. Finally, Tg MSCs promoted bacterial clearance and enhanced neutrophil phagocytosis, in part through their increased expression of stromal cell-derived factor-1 compared with WT MSCs. Taken together, these data demonstrate that expression of dnHMGA1 in MSCs provides a functional advantage of the cells when administered during bacterial sepsis.
Collapse
Affiliation(s)
- Min‐Young Kwon
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sailaja Ghanta
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Julie Ng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ana P. Castano
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Junwen Han
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Bonna Ith
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - James A. Lederer
- Department of SurgeryBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Souheil El‐Chemaly
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Su Wol Chung
- Department of Biological SciencesUniversity of UlsanUlsanSouth Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Feng J, Bian Q, He X, Zhang H, He J. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model. Microb Pathog 2021; 158:105069. [PMID: 34175436 DOI: 10.1016/j.micpath.2021.105069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
The high incidence of tuberculosis (TB) has brought serious social burdens and it is urgent to explore the mechanism of TB development. This study was conducted to analyze the role of lncRNA-miRNA-mRNA regulatory network and its contained nodes involved in TB to identify crucial biomarkers for early diagnosis of TB. Long-noncoding RNAs (lncRNAs), messenger RNA (mRNAs) and microRNAs (miRNAs) expression profiles of TB patients and healthy individuals were downloaded from the GSE34608 dataset. Weighted gene co-expression network analysis (WGCNA) was performed to identified the key modules related to TB and the highly related mRNA-lncRNA pair in the module. Based on highly related mRNAs and lncRNAs in greenyellow module, lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed. The DE-mRNAs in the network were functionally enriched with Gene ontology (GO) and Gene set enrichment analysis (GSEA). Least absolute shrinkage and selection operator (LASSO) algorithm and receiver operating characteristic curve (ROC) were used to construct and evaluate the prediction model of TB. We identified 3267 DE-mRNAs, 484 DE-lncRNAs and 69 DE-miRNAs between the TB and healthy subjects, from which 8 DE-mRNAs, 14 DE-lncRNAs and 3 DE-miRNAs were used to construct the ceRNA network. The genes contained in the ceRNA network were mainly enriched in neutrophil mediated immune response, including neutrophil activation, degradation and signal transduction. ROC analysis revealed that has-miR-140-5p, has-miR-142-3p and the LASSO cox prediction model based on HMGA1 and CAPN1 have potential value for forecasting TB (AUC > 0.7). Hence, our study provides a new perspective from the lncRNA-miRNA-mRNA ceRNA regulatory network for TB diagnosis and treatment.
Collapse
Affiliation(s)
- Jinfang Feng
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Qin Bian
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China.
| | - Xianwei He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Han Zhang
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jiujiang He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| |
Collapse
|
8
|
Abstract
Implantation of bacteria embedded in a fibrin clot allows for successful establishment of sepsis in preclinical models. This model allows the investigator to modulate the strain of bacteria as well as the bacterial load delivered. As it allows for a slow release of standardized bacteria, the use of a fibrin clot model may be considered in studying the initial and later phases of sepsis and the host response to infection. Here we describe methods for performing the fibrin clot model of sepsis.
Collapse
Affiliation(s)
- Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Min-Young Kwon
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|
10
|
Liu Z, Zeng Z, Wu C, Liu H. Tropisetron inhibits sepsis by repressing hyper-inflammation and regulating the cardiac action potential in rat models. Biomed Pharmacother 2019; 110:380-388. [PMID: 30529771 DOI: 10.1016/j.biopha.2018.11.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The objective of the present investigation was to explore the possible effect of the 5-HT3 receptor antagonist tropisetron on the expression levels of the inflammatory factors interleukin 6 (IL-6), creatine kinase isoenzyme (CK-MB), soluble growth stimulating gene 2 protein (sST2) and immunoglobulin E (IgE), as well as the cardiac action potential in septic rats. METHODS The cecal ligation and perforation (CLP) method was utilized to construct abdominal infarction in rats. A total of 68 male adult Sprague Dawley rats were used, including 40 for assessing survival and 28 for detecting the expression levels of IL-6 and IgE, myocardial injury, cardiac dysfunction and the cardiac action potential. These 28 rats were divided into the sham (6 rats), sham + Tropisetron (6 rats), CLP (8 rats) and CLP + Tropisetron (8 rats) groups. Twenty-four hours after establishment of the sepsis rat model, immunohistochemistry was used to analyze 5-HT3 receptor protein expression, and enzyme-linked immunosorbent assay (ELISA) was employed to monitor the serum levels of IL-6, CKMB, sST2 and IgE. Furthermore, the structure of the myocardium in various groups was examined by H&E staining. RESULTS The levels of IL-6, CK-MB, sST2 and IgE in the sepsis group were significantly higher than those of the sham group (P < 0.01). Furthermore, the heart rate in the sepsis group was lower than that of the sham group (P < 0.01), and the time of atrial ventricular action potential in the sepsis group was longer than that of the sham group (P < 0.05). In addition, immunohistochemical analyses showed that the area, intensity and index of 5-HT3 receptor in the sepsis group were significantly lower than those of the sham group (P < 0.01). Importantly, the 5-HT3 receptor antagonist Tropisetron exhibited significant inhibitory effects IL-6, CK-MB, sST2 and IgE expression levels, and inductive effects on atrial ventricular action potential in the sepsis group. CONCLUSIONS Sepsis leads to systemic inflammatory reaction, resulting in myocardial injury, structural changes and immune imbalance. The inhibitory effect of tropisetron on inflammation, and the regulatory inflammatory disorder by the efferent vagus nerve may be one of the important mechanisms leading to cardiac electrophysiological changes in sepsis.
Collapse
Affiliation(s)
- Zhengjiang Liu
- Department of Cardiology, the Six Affiliated Hospital of Guangzhou Medical University/ Qingyuan People's Hospital, Qingyuan 511500, China.
| | - Zhiheng Zeng
- Department of Cardiology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Changdong Wu
- NO.1 Deppartment of ICU, the People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Hua Liu
- Department of Cardiology, the Six Affiliated Hospital of Guangzhou Medical University/ Qingyuan People's Hospital, Qingyuan 511500, China
| |
Collapse
|