1
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
2
|
Pirgova G, Chauveau A, MacLean AJ, Cyster JG, Arnon TI. Marginal zone SIGN-R1 + macrophages are essential for the maturation of germinal center B cells in the spleen. Proc Natl Acad Sci U S A 2020; 117:12295-12305. [PMID: 32424104 PMCID: PMC7275705 DOI: 10.1073/pnas.1921673117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanisms that regulate germinal center (GC) B cell responses in the spleen are not fully understood. Here we use a combination of pharmacologic and genetic approaches to delete SIGN-R1+ marginal zone (MZ) macrophages and reveal their specific contribution to the regulation of humoral immunity in the spleen. We find that while SIGN-R1+ macrophages were not essential for initial activation of B cells, they were required for maturation of the response and development of GC B cells. These defects could be corrected when follicular helper T (Tfh) cells were induced before macrophage ablation or when Tfh responses were enhanced. Moreover, we show that in the absence of SIGN-R1+ macrophages, DCIR2+ dendritic cells (DCs), which play a key role in priming Tfh responses, were unable to cluster to the interfollicular regions of the spleen and were instead displaced to the MZ. Restoring SIGN-R1+ macrophages to the spleen corrected positioning of DCIR2+ DCs and rescued the GC B cell response. Our study reveals a previously unappreciated role for SIGN-R1+ macrophages in regulation of the GC reaction and highlights the functional specification of macrophage subsets in the MZ compartment.
Collapse
Affiliation(s)
- Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Anne Chauveau
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Andrew J MacLean
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Jason G Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Tal I Arnon
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| |
Collapse
|
3
|
Alothaimeen T, Seaver K, Mulder R, Gee K, Basta S. Granulocyte/Macrophage Colony-Stimulating Factor-Derived Macrophages Exhibit Distinctive Early Immune Response to Lymphocytic Choriomeningitis Virus Infection. Viral Immunol 2020; 33:477-488. [PMID: 32255741 DOI: 10.1089/vim.2019.0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF) modulate differentiation and immune functions of macrophages (MΦ). Our aim was to evaluate how different MΦ differentiation conditions influence the MΦ response to virus infection. To address this, we differentiated bone marrow-derived MΦ in either GM-CSF or M-CSF and measured the cytokine responses to two different strains of lymphocytic choriomeningitis virus (LCMV) (clone 13; Cl13 or Armstrong; ARM). GM-CSF MΦ infected with either LCMV-ARM or -Cl13 produced more IL-6 than M-CSF MΦ, whereas M-CSF MΦ generated more IL-10 than GM-CSF MΦ. Interestingly, in M-CSF MΦ, LCMV-ARM induced more IL-10 production than Cl13. However, we could not detect any IL-12p70 or IL-23 after infection from either cell types. We also observed that GM-CSF MΦ was more efficient than M-CSF MΦ in supporting antigen-specific CD8+ T cell proliferation. Taken together, our data demonstrate that GM-CSF and M-CSF MΦ differ in how they respond to viral infection by their production of different cytokines, and their support for CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Rylend Mulder
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
4
|
Okano T, Kishimoto I. Csf1 Signaling Regulates Maintenance of Resident Macrophages and Bone Formation in the Mouse Cochlea. Front Neurol 2019; 10:1244. [PMID: 31824413 PMCID: PMC6881377 DOI: 10.3389/fneur.2019.01244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
In the mammalian cochlea, resident macrophages settle in the spiral ligament, spiral ganglion, and stria vascularis, even at the steady state. Resident macrophages in the cochlea are believed to maintain homeostasis in the inner ear and become active, as part of the front line defense, following inner ear damage. However, the exact roles of cochlear resident macrophages require further clarification. Colony stimulating factor-1 (Csf1) signaling regulates survival, proliferation, and differentiation of resident macrophages and appears to be essential for resident macrophages in the inner ear. To examine the roles of Csf1 signaling in auditory function, we examined the ossicles and inner ear of homozygous Csf1 mutant (Csf1 op/op ) mice. The ossicles including the incus and stapes of Csf1 op/op mice macroscopically demonstrated bone thickening, and the otic capsules of the inner ear were also thick and opaque. Histological analyses demonstrated that the otic capsules in Csf1 op/op mice were thickened and showed spongy bone degeneration. Measurements of the auditory brainstem response revealed significant elevation of thresholds in 4-week old Csf1 op/op mice compared with wild-type littermates, indicating that Csf1 op/op mice demonstrate hearing loss due to, at least in part, deformity of the ossicles and bone capsule of the inner ear. Furthermore, Csf1 op/op mice are deficient in the number of resident macrophages in the spiral ligament and stria vascularis, but not in the spiral ganglion. These data provide evidence that Csf1 signaling is important not only for bone formation in the inner ear, but also for the maintenance of resident macrophages in the spiral ligament and stria vascularis in the adult mouse cochlea.
Collapse
Affiliation(s)
- Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ippei Kishimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. ACTA ACUST UNITED AC 2015; 212:497-512. [PMID: 25800955 PMCID: PMC4387283 DOI: 10.1084/jem.20141642] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Dutta et al. show that targeting VACM-1 expression in splenic macrophages impairs extramedullary hematopoiesis, thus reducing inflammation in mouse ischemic heart and atherosclerotic plaques. Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)+ macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE−/− mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Friedrich Felix Hoyer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lubov S Grigoryeva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital Heidelberg, D-69120 Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | | | - Vera M Ruda
- Alnylam Pharmaceuticals, Cambridge, MA 02142
| | | | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yuan Sun
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nicolas Da Silva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 Division of Health Science Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
7
|
Kurotaki D, Uede T, Tamura T. Functions and development of red pulp macrophages. Microbiol Immunol 2015; 59:55-62. [DOI: 10.1111/1348-0421.12228] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004
| | - Toshimitsu Uede
- Division of Molecular Immunology; Institute for Genetic Medicine; Hokkaido University; Sapporo 060-0815 Japan
| | - Tomohiko Tamura
- Department of Immunology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004
| |
Collapse
|
8
|
den Haan JMM, Martinez-Pomares L. Macrophage heterogeneity in lymphoid tissues. Semin Immunopathol 2013; 35:541-52. [PMID: 23579230 DOI: 10.1007/s00281-013-0378-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
Macrophages in lymphoid organs exhibit a wide variety of phenotypes and functions. These cells excel in the removal of apoptotic cells that arise during the generation of immune cells and are thereby essential for the prevention of auto-immune responses. In addition to this macrophages in the secondary lymphoid organs form an important barrier for spreading of infections by phagocytosis of pathogens and the activation of both innate and adaptive immune responses. Thus, the remarkable ability of macrophages to phagocytose and handle a wide range of self and non-self material and to produce immunomediators is effectively exploited within lymphoid organs to regulate immune activation.
Collapse
Affiliation(s)
- Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007, MB, Amsterdam, the Netherlands.
| | | |
Collapse
|
9
|
Kurotaki D, Kon S, Bae K, Ito K, Matsui Y, Nakayama Y, Kanayama M, Kimura C, Narita Y, Nishimura T, Iwabuchi K, Mack M, van Rooijen N, Sakaguchi S, Uede T, Morimoto J. CSF-1–Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2011; 186:2229-37. [DOI: 10.4049/jimmunol.1001345] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 2010; 116:3955-63. [PMID: 20682855 DOI: 10.1182/blood-2010-02-266296] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.
Collapse
|
11
|
An efficient culture method for generating large quantities of mature mouse splenic macrophages. J Immunol Methods 2008; 338:47-57. [PMID: 18675819 DOI: 10.1016/j.jim.2008.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023]
Abstract
In this study, we established an efficient in vitro culture method for generating mature splenic macrophages (Sp-Mphi). Splenocytes were cultured in the presence of conditioned medium containing macrophage colony-stimulating factor (M-CSF) for 7 days post post-isolation and the generated Sp-Mphi were characterized phenotypically and functionally. Through this method, 9 x 10(6)/mouse Sp-Mphi were obtained in comparison to 2 x 10(5)/mouse when Mphi were cultured in regular medium. In addition, the purity of these cells was as high as 80% by day 5 and >90% by day 7 of culturing, confirmed with Mphi-specific markers. The increased Sp-Mphi yields, in the presence of M-CSF, point towards the existence of a precursor population in the spleen that can be influenced to differentiate into Sp-Mphi. Moreover, we compared the maturation of generated Sp-Mphi to conventional bone marrow-derived Mphi (BM-Mphi) in vitro. Interestingly, Sp-Mphi exhibited lower capacity to phagocytose dead cells after 3 days of maturation, but showed similar internalizing capacity after 5 and 7 of maturation to BM-Mphi cultured for the same time period. Importantly, Sp-Mphi upregulated the expression of several surface markers such as MOMA-2 and CD68 while downregulating SIGN-R1 after 7 days, indicating that these Sp-Mphi undergo further maturation in vitro due to culturing in M-CSF. Taken together, we describe and validate a method for generating Sp-Mphi in large quantities and high purity. These data should prove valuable in future studies characterizing the functions and maturation of Sp-Mphi.
Collapse
|
12
|
Abstract
Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.
Collapse
Affiliation(s)
- Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
13
|
Taylor PR, Zamze S, Stillion RJ, Wong SYC, Gordon S, Martinez-Pomares L. Development of a specific system for targeting protein to metallophilic macrophages. Proc Natl Acad Sci U S A 2004; 101:1963-8. [PMID: 14764901 PMCID: PMC357035 DOI: 10.1073/pnas.0308490100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Indexed: 11/18/2022] Open
Abstract
The cysteine-rich domain (CR) of the mannose receptor binds sulfated glycoprotein CR ligand (CRL) expressed by subpopulations of myeloid cells in secondary lymphoid organs (CRL(+) cells). In naïve mice, these CRL(+) cells, metallophilic macrophages (M) in spleen and subcapsular sinus M in lymph nodes, are located strategically for antigen capture and are adjacent to B cell follicles, but their role in the immune response is unknown. We have exploited the lectin activity of CR to develop a highly specific system for targeting protein to CRL(+) M. We demonstrate that the sulfated carbohydrates recognized by CR are exposed to the extracellular milieu and mediate highly specific targeting of CR-containing proteins. This model will allow the dissection of the role of metallophilic M in an immune response in vivo.
Collapse
Affiliation(s)
- Philip R Taylor
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 2003; 198:333-40. [PMID: 12874264 PMCID: PMC2194070 DOI: 10.1084/jem.20030684] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The marginal zone of the spleen is a precisely ordered region that contains specialized subsets of B lymphocytes and macrophages. Disruption of the negative signaling inositol phosphatase, SH2-containing inositol-5-phosphatase 1 (SHIP), results in the loss of marginal zone B cells (MZBs) with reorganization of marginal zone macrophages (MZMOs) to the red pulp of the spleen. This primary macrophage defect, as revealed by selectively depleting SHIP in myeloid cells shows that MZMOs are specifically required for the retention of MZBs. The MZMO phenotype was reverted in SHIP/Bruton's tyrosine kinase (Btk) double knockout mice, thus identifying the Btk activating pathway as an essential component being regulated by SHIP. Furthermore, we identified a direct interaction between the MARCO scavenger receptor on MZMOs and MZBs. Activation or disruption of this interaction results in MZB migration to the follicle. The migration of the MZMOs was further studied after the response to Staphylococcus aureus, which induced MZMOs to move into the red pulp while MZBs migrated into the follicular zone. The marginal zone is therefore a dynamic structure in which retention and trafficking of B cells requires specific macrophage-B cell interactions.
Collapse
Affiliation(s)
- Mikael C.I. Karlsson
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021
| | - Rodolphe Guinamard
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021
- Centre d'Immunologie de Marseille Luminy, CNRS-INSERM-Universite de la Mediterranee, 13288 Marseille, France
| | - Silvia Bolland
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, MD 20852
| | - Marko Sankala
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, The Karolinska Institute, 17177 Stockholm, Sweden
| | - Ralph M. Steinman
- Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021
| |
Collapse
|
15
|
Abboud SL, Bunegin M, Ghosh-Choudhury N, Woodruff K. Analysis of the mouse CSF-1 gene promoter in a transgenic mouse model. J Histochem Cytochem 2003; 51:941-9. [PMID: 12810844 DOI: 10.1177/002215540305100709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
CSF-1 stimulates monocyte and osteoclast populations. However, the molecular mechanisms involved in regulating CSF-1 gene expression are unclear. To identify regulatory regions that control normal CSF-1 gene expression, a -774/+183-bp fragment of the murine CSF-1 promoter was analyzed in vitro and in vivo. Transcriptional activity was high in cultured osteoblasts that express CSF-1 mRNA compared to ARH-77 B cells that lack CSF-1 gene expression. Transient transfection of osteoblasts with promoter deletion constructs showed that the -774-bp fragment conferred the highest transcriptional activity and contained activator and repressor sequences. To assess the ability of the CSF-1 promoter to confer normal tissue expression of CSF-1, transgenic mice containing the -774/+183-bp region driving the E. coli beta-galactosidase (lacZ) reporter gene were generated. beta-Gal analysis of whole tissue extracts showed transgene expression in all tissues tested except liver and kidney. At the cellular level, the pattern of beta-gal expression in the spleen, thymus, bone, lung, and testes of adult transgenic mice mimicked normal endogenous CSF-1 mRNA expression in non-transgenic littermates detected by in situ hybridization. This region also directed appropriate transgene expression to sites in other tissues known to synthesize CSF-1, with the exception of the liver and kidney. These findings indicate that the -774-bp fragment contains cis-acting elements sufficient to direct CSF-1 gene expression in many tissues. CSF-1 promoter/lacZ mice may be useful for studying the transcriptional mechanisms involved in regulating CSF-1 gene expression in tissues throughout development.
Collapse
Affiliation(s)
- Sherry L Abboud
- South Texas Veterans Health Care System, Audie L. Murphy Division, and the Department of Pathology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA.
| | | | | | | |
Collapse
|
16
|
Mueller CG, Cremer I, Paulet PE, Niida S, Maeda N, Lebeque S, Fridman WH, Sautès-Fridman C. Mannose receptor ligand-positive cells express the metalloprotease decysin in the B cell follicle. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5052-60. [PMID: 11673514 DOI: 10.4049/jimmunol.167.9.5052] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Decysin, a gene encoding a disintegrin metalloprotease, is transcribed in human dendritic cells (DC) and germinal centers (GC). We have cloned its murine homologue and show that it is processed by the endoprotease furin before secretion of the catalytic domain. We have defined the cell types that express decysin in mouse spleen in the course of an immune response to T cell-dependent Ags. Like in humans, decysin is transcribed by activated CD11c(+) DC that enter the T cell zone from the marginal zone (MZ). In the GC, decysin is expressed by follicular DC and tingible body macrophages. In addition, a MZ cell population expresses decysin and appears to migrate into the B cell follicle. The majority of these follicle-homing cells express the mannose receptor ligand, a marker for the macrophage-like MZ metallophils. The follicle-homing cells are M-CSF dependent, as they are absent in op/op mice that lack functional M-CSF. This suggests that mannose receptor ligand(+) MZ metallophils differentiate into cells that migrate from the MZ into the B cell follicle. Decysin represents the first marker for this previously unrecognized cell population of the mouse spleen, which may represent a precursor for GCDC and may be specialized in the transport of unprocessed Ag from the MZ into developing GC.
Collapse
Affiliation(s)
- C G Mueller
- Institut National de la Santé et de la Recherche Médicale Unité 255, Centre de Recherches Biomedicales des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, Russell RG, Pollard JW, Stanley ER. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 2001; 98:74-84. [PMID: 11418465 DOI: 10.1182/blood.v98.1.74] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.
Collapse
Affiliation(s)
- G R Ryan
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ito S, Naito M, Kobayashi Y, Takatsuka H, Jiang S, Usuda H, Umezu H, Hasegawa G, Arakawa M, Shultz LD, Elomaa O, Tryggvason K. Roles of a macrophage receptor with collagenous structure (MARCO) in host defense and heterogeneity of splenic marginal zone macrophages. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:83-95. [PMID: 10223745 DOI: 10.1679/aohc.62.83] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Class A type I and type II macrophage scavenger receptors (MSR-A) and a macrophage receptor with collagenous structure (MARCO) are trimeric membrane glycoproteins mediating the uptake of chemically modified low density lipoproteins. MSR-A is expressed constitutively in several tissue macrophages and in liver sinusoidal endothelial cells, whereas MARCO is expressed constitutively in splenic marginal zone macrophages and in macrophages and endothelial cells in the lymphatic medullary sinuses of lymph nodes. The administration of LPS, zymosan, BCG, or L. monocytogenes to mice resulted in marked and transient MARCO expression and in the upregulation of MSR-A expression in the liver and spleen. In osteopetrotic (op) mutant mice defective in the production on M-CSF, ER-TR9-positive marginal zone macrophages and MOMA-1-positive marginal metallophilic macrophages were absent, whereas MARCO-expressing marginal zone macrophages were present, indicating the heterogeneity of marginal zone macrophages. Intravenous administration of BCG resulted in marked accumulation of BCG bacilli in the both marginal zone macrophages and marginal metallophilic macrophages in littermate control mice. In contrast, BCG bacilli were incorporated almost exclusively by MARCO-expressing marginal zone macrophages in op/op mice. These results indicate that MARCO is not only expressed constitutively in specific macrophage subpopulations but is also induced by various bacterial antigens and plays a role in host defense against bacteria.
Collapse
Affiliation(s)
- S Ito
- Second Department of Pathology, Niigata University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Naito M, Umeda S, Takahashi K, Shultz LD. Macrophage differentiation and granulomatous inflammation in osteopetrotic mice (op/op) defective in the production of CSF-1. Mol Reprod Dev 1997; 46:85-91. [PMID: 8981368 DOI: 10.1002/(sici)1098-2795(199701)46:1<85::aid-mrd13>3.0.co;2-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the osteopetrotic (op/op) mouse was demonstrated to have a mutation within the coding region of the CSF-1 gene itself, it serves as a model for investigating the differentiation mechanism of macrophage populations in the absence of functional CSF-1. The op/op mice were severely monocytopenic and showed marked reduction and abnormal differentiation of tissue macrophages. Osteoclasts as well as marginal metallophilic macrophages and marginal zone macrophages in the spleen were absent. Most of the tissue macrophages were reduced in number and ultrastructurally immature. However, the degree of reduction in numbers of macrophages in the mutant mice was variable among tissues, suggesting that the heterogeneity of macrophages was generated by their different dependency on CSF-1. After daily CSF-1 injection, the numbers of monocytes, tissue macrophages, and osteoclasts were remarkably increased, and the macrophages showed morphological maturation. However, the numbers of macrophages in the ovary, uterus, and synovial membrane were not increased. In the bone marrow, macrophage precursors detected by monoclonal antibody ER-MP58 proliferated and differentiated into preosteoclasts and osteoclasts. In the spleen, marginal metallophilic macrophages and marginal zone macrophages developed slowly. In this manner, CSF-1 plays an important role in the development, proliferation, and differentiation of certain tissue macrophage populations and osteoclasts. In the op/op mice, Kupffer cells proliferated, transformed into epithelioid cells and multinucleated giant cells, and participated in glucan-induced granuloma formation. In CSF-1-treated op/op mice, the process of granuloma formation was similar to that in normal littermates due to increased monocytopoiesis and monocyte influx into the granulomas. These results indicate that CSF-1 is a potent inducer of the development and differentiation of CSF-1-dependent monocyte/macrophages, and that CSF-1-independent macrophages also play an important role in granuloma formation.
Collapse
Affiliation(s)
- M Naito
- Second Department of Pathology, Niigata University School of Medicine, Japan
| | | | | | | |
Collapse
|
20
|
Takahashi K, Naito M, Takeya M. Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol Int 1996; 46:473-85. [PMID: 8870002 DOI: 10.1111/j.1440-1827.1996.tb03641.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages are a heterogeneous population differing in their site of location, morphology and function. They develop from hematopoietic stem cells originating in both fetal and bone marrow hematopoiesis. In yolk sac and early hepatic hematopoiesis, primitive/fetal macrophages develop from hematopoietic stem cells, bypassing the stage of monocytic cells (monoblasts, promonocytes and monocytes), possess proliferative capacity and differentiate into resident macrophages in tissues in late ontogeny. Monocytic cells develop in hepatic hematopoiesis after the development of primitive/fetal macrophages, then move into the bone marrow in late ontogeny, forming a monocyte-derived macrophage population in tissues. Like monocytes, the monocyte-derived macrophages have no proliferative potential and are short-lived, whereas the resident macrophages are long-lived in tissue, possess proliferative capacity and can be sustained by self-renewal. In adult life, the bone marrow releases macrophage precursors (immature myeloid cells) and monocytes into peripheral blood, but normally not monoblasts or promonocyts. The myeloid precursor cells migrate into tissues and differentiate into resident macrophages or related cells in situ due to macrophage differentiation or growth factors, such as M-CSF and GM-CSF, produced in situ and/or supplied humorally. Monocytes, however, migrate into tissues in response to inflammatory stimuli and differentiate into exudate macrophages. The distinct differentiation pathways of monocyte/macrophages, resident macrophages, other macrophage subpopulations, and macrophage-related cells are reviewed together with the heterogeneity of macrophage precursor cells.
Collapse
Affiliation(s)
- K Takahashi
- Second Department of Pathology, Kumamoto University Medical School, Japan
| | | | | |
Collapse
|
21
|
Pollard JW, Stanley ER. Pleiotropic Roles for CSF-1 in Development Defined by the Mouse Mutation Osteopetrotic. ADVANCES IN DEVELOPMENTAL BIOCHEMISTRY 1996. [DOI: 10.1016/s1064-2722(08)60060-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Hume DA, Favot P. Is the osteopetrotic (op/op mutant) mouse completely deficient in expression of macrophage colony-stimulating factor? J Interferon Cytokine Res 1995; 15:279-84. [PMID: 7627801 DOI: 10.1089/jir.1995.15.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The op/op mouse has a mutation in the macrophage colony-stimulating (CSF-1) gene. The phenotype of gross deficiency in the macrophage and osteoclast lineages corrects significantly with age, suggesting that other factors can substitute for CSF-1. This review examines the evidence that the op/op mouse is completely CSF-1 deficient and considers the possibility that alternative splicing within the CSF-1 gene might bypass the mutation, yielding an incompletely penetrant phenotype.
Collapse
Affiliation(s)
- D A Hume
- Centre for Molecular and Cellular Biology, University of Queensland, Australia
| | | |
Collapse
|