1
|
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has emerged as a key upstream regulator of cell death and inflammation. RIPK1-mediated signaling governs the outcome of signaling pathways initiated by tumor necrosis factor receptor 1 (TNFR1), Toll-like receptor 3 (TLR3), TLR4, retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA-5), and Z-binding protein 1 (ZBP1) by signaling for NF-κB activation, mitogen-associated protein kinase (MAPK) and interferon regulatory factor 3/7 (IRF3/7) phosphorylation, and cell death via apoptosis and necroptosis. Both cell death and inflammatory responses play a major role in controlling virus infections. Therefore, viruses have evolved multifaceted mechanisms to exploit host immune responses by targeting RIPK1. This review focuses on the current understanding of RIPK1-mediated inflammatory and cell death pathways and multiple mechanisms by which viruses manipulate these pathways by targeting RIPK1. We also discuss gaps in our knowledge regarding RIPK1-mediated signaling pathways and highlight potential avenues for future research.
Collapse
|
2
|
DCBLD2 Mediates Epithelial-Mesenchymal Transition-Induced Metastasis by Cisplatin in Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13061403. [PMID: 33808696 PMCID: PMC8003509 DOI: 10.3390/cancers13061403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022] Open
Abstract
Growing evidence suggests that cisplatin and other chemotherapeutic agents promote tumor metastasis while inhibiting tumor growth, which is a critical issue for certain patients in clinical practices. However, the role of chemotherapeutics in promoting tumor metastasis and the molecular mechanism involved are unclear. Here, we investigated the roles of cisplatin in promoting tumor metastasis in lung adenocarcinoma (LUAD). We demonstrated that cisplatin promoted epithelial-mesenchymal transition (EMT), cell motility, and metastasis in vitro and in vivo. The bioinformatic analysis and molecular biology approaches also indicated that DCBLD2 (Discoidin, CUB and LCCL domain containing 2) is a key gene that mediates cisplatin-induced metastasis. DCBLD2 stabilizes β-catenin by phosphorylating GSK3β and transporting accumulated β-catenin to the nucleus to promote the expression of EMT-related transcriptional factors (TFs), ultimately resulting in tumor metastasis. We also identified that cisplatin enhanced DCBLD2 expression by phosphorylating ERK and hence the AP-1-driven transcription of DCBLD2. Furthermore, DCBLD2-specific siRNAs encapsulated by nanocarriers prominently inhibit cisplatin-induced metastasis in vivo. Therefore, DCBLD2 plays a key role in cisplatin-induced metastasis in LUAD and is a potential target for preventing chemotherapy-induced metastasis in vivo.
Collapse
|
3
|
Guyton K, Bond R, Romeo C, Southern R, Cochran J, Teti G, Cook JA. Endotoxin-induced cross-tolerance to Gram-positive sepsis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050030501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manifestations of Gram-positive sepsis and Gram-negative sepsis share some common clinical features suggesting common pathways of activation. The goal of this study was to assess whether lipopolysaccharide (LPS) can produce cross-tolerance to Gram-positive sepsis induced by group B streptococcus (GBS). Thromboxane (TxB2), tumor necrosis factor (TNFα), and nitric oxide (NO) production by in vitro LPS- and heat killed GBS-stimulated rat peritoneal macrophages were measured. Since our previous studies have demonstrated altered macrophage activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) in tolerance, we also examined the effect of LPS and killed GBS on ERK 1/2 activation in normal and LPS tolerant macrophages. Tolerance was induced in rats by intraperitoneal injection of Salmonella enteritidis LPS or vehicle for two consecutive days at doses of 0.1 and 0.5 mg/kg body weight. Three days after the second LPS dose, rats were injected intravenously with viable GBS (5 x l09 cfu/kg) and D-galactosamine (1 g/kg). LPS tolerance significantly prolonged ( P <0.05) mean survival time to severe GBS sepsis in D-galactosamine sensitized rats from 12.9 ± 1.7 h in control rats to 44.0 ± 8.9 h in tolerant rats. Peritoneal macrophages from LPS tolerant rats exhibited suppressed LPS induced in vitro TxB2 and TNFα production ( P <0.05). Tolerance also decreased in vitro heat killed GBS-induced TNFα production, but did not significantly affect TxB2 production. NO production stimulated by LPS (10 µg/ml was not impaired in LPS tolerance; however at lower doses (0.02—1.25 µg/ml), NO production was significantly decreased ( P <0.05). NO production was augmented ( P <0.05) in response to stimulation with GBS (10 µg/ml) and unaltered at lower doses (0.02—1.25 µg/ml) in tolerant cells. LPS activated ERK 1/2 in control macrophages, but activation of ERK 1/2 was suppressed in LPS tolerance. GBS did not significantly affect ERK 1/2 activity in control or tolerant macrophages. Nevertheless, the selective mitogen-activated kinase (MAPK)/ERK kinase (MEK) inhibitor, PD 98059 blocked ( P <0.05) both GBS- and LPS-induced TNFα and TxB2 production, but not NO production. Thus, some level of ERK 1/2 activity appears essential for GBS- and LPS-induced macrophage activation. In conclusion, LPS tolerance induces partial cross-tolerance to Gram-positive sepsis induced lethality, and alters LPS- and GBS-induced in vitro peritoneal macrophage mediator production. This suggests common pathways of cellular activation for GBS and LPS that are altered by LPS tolerance.
Collapse
Affiliation(s)
- Kelly Guyton
- Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert Bond
- Department of Physiology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Cristina Romeo
- Department of Microbiology, Medical University of Messina, Messina, Italy
| | - Rodney Southern
- Department of Physiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel Cochran
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Giuseppe Teti
- Department of Microbiology, Medical University of Messina, Messina, Italy
| | - James A. Cook
- Department of Physiology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Role of the extracellular signal-regulated kinase 1/2 pathway in driving tricalcium silicate-induced proliferation and biomineralization of human dental pulp cells in vitro. J Endod 2013; 39:1023-9. [PMID: 23880270 DOI: 10.1016/j.joen.2013.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/18/2013] [Accepted: 03/03/2013] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The aim of this study was to investigate the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in regulating tricalcium silicate (C3S)-driven proliferation and biomineralization of human dental pulp cells (hDPCs) in vitro. METHODS Human DPCs were cultured in C3S-containing medium and compared with untreated controls. Cell viability was measured by the methyl-thiazol-tetrazolium assay. Biomineralization was assessed by staining calcium deposits on the extracellular matrix with von Kossa and alizarin red S stains. Phosphorylated ERK1/2 was evaluated by immunoblotting. The ERK1/2 inhibitor U0126 was used to assess the role of this pathway on stage of the cell cycle and mineralization-dependent gene expressions of hDPCs by using flow cytometry and real-time polymerase chain reaction, respectively. Data were analyzed by analysis of variance followed by the Student-Newman-Keuls post hoc test, with significance set at P < .05. RESULTS The viability and biomineralization of hDPCs were promoted by C3S extracts (P < .05). Phosphorylated ERK1/2 strongly appeared after hDPCs were cultured in the C3S extracts for 30 minutes. Moreover, inhibition of the ERK1/2 pathway in C3S-treated hDPCs decreased proliferation and the expression of mineralization-dependent genes, including collagen type I, dentin sialophosphoprotein, osteopontin, and osteocalcin (P < .05). CONCLUSIONS C3S stimulated the proliferation and biomineralization of hDPCs in vitro, with the ERK1/2 pathway playing a key role in the regulation of these effects.
Collapse
|
5
|
Anti-tumour activity of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline against tumour cells in vitro. Cell Biol Int 2012; 36:377-82. [PMID: 22073964 DOI: 10.1042/cbi20110312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to create novel, potent and selective anti-cancer agents, the action of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline (compound 1018) on 10 different kinds of tumour cells were assayed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide]. It possesses a broad spectrum of anti-cancer activity. The mechanism of action of 4-(4-fluorophenyl)amino-5,6,7-trimethoxyquinazoline (hereafter referred to as compound 1018) against tumour cells was studied in androgen-independent prostate cancer PC-3 cells by microscopic observation, LDH (lactate dehydrogenase) release assay and Western blotting. Its activity was dose-dependent, with an IC50 of 13.0±1.4 μM after 72 h treatment. Microscopy and LDH release assay indicated that the effect was through anti-proliferation rather than cytotoxicity. Western blot analysis also showed that treatment of cells with 50 μM compound 1018 for 30 min almost completely inhibited EGF (epidermal growth factor)-induced phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2), which suggests that its anti-proliferative effect is largely associated due to ERK1/2 activation being inhibited. Thus compound 1018 is a potential anti-cancer agent.
Collapse
|
6
|
Wang H, Qian PY. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:390-402. [PMID: 20535771 DOI: 10.1002/jez.b.21344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hydroides elegans is a common marine fouling organism in most tropical and subtropical waters. The life cycle of H. elegans includes a planktonic larval stage in which swimming larvae normally take 5 days to attain competency to settle. Larval metamorphosis marks the beginning of its benthic life; however, the endogenous molecular mechanisms that regulate metamorphosis remain largely unknown. In this study, a PCR-based suppressive subtractive hybridization (SSH) library was constructed to screen the genes expressed in competent larvae but not in precompetent larvae. Among the transcripts isolated from the library, 21 significantly matched sequences in the GenBank. Many of these isolated transcripts have putative roles in the reactive oxygen species (ROS) signal transduction pathway or in response to ROS stress. A putative novel p38 mitogen-activated protein kinase (MAPK), which was also isolated with SSH screen, was then cloned and characterized. The MAPK inhibitors assay showed that both p38 MAPK inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H(2)O(2) effectively induced larval metamorphosis of H. elegans, but the inductivity of H(2)O(2) was also inhibited by both SB inhibitors. The catalase assay showed that the catalase could effetely inhibit H. elegans larvae from responding to inductive biofilm. These results showed that the p38 MAPK-dependent pathway plays critical role in controlling larval metamorphosis of the marine polychaete H. elegans, and the reactive oxygen radicals produced by biofilm could be the cue inducing larval metamorphosis.
Collapse
Affiliation(s)
- Hao Wang
- KAUST Global Collaborative Research Program, Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR
| | | |
Collapse
|
7
|
Muscella A, Urso L, Calabriso N, Vetrugno C, Rochira A, Storelli C, Marsigliante S. Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol 2009; 156:751-63. [PMID: 19254279 DOI: 10.1111/j.1476-5381.2008.00049.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that cisplatin inititates a signalling pathway mediated by PKC-delta/extracellular signal-regulated kinase (ERK), important for maintaining viability in PC Cl3 thyroid cells. The studies described herein examined whether c-fos was associated with cisplatin resistance and the signalling link between c-fos and PKC-delta/ERK. EXPERIMENTAL APPROACH Cells were treated with various pharmacological inhibitors of PKCs and ERK, or were depleted of c-fos, PKC-delta, PKC-epsilon and caspase-3 by small interfering RNA (siRNA), then incubated with cisplatin and cytotoxicity assessed. KEY RESULTS Cisplatin provokes the induction of c-fos and the activation of conventional PKC-beta, and novel PKC-delta and -epsilon. The cisplatin-provoked c-fos induction was decreased by Gö6976, a PKC-beta inhibitor; by siRNA for PKC-delta- but not that for PKC-epsilon or by PD98059, a mitogen-activated protein kinase/ERK kinase inhibitor. Expression of c-fos was abolished by GF109203X, an inhibitor of all PKC isoforms, or by PD98059 plus Gö6976 or by PKC-delta-siRNA plus Gö6976. When c-fos expression was blocked by siRNA, cisplatin cytotoxicity was strongly enhanced with increased caspase-3 activation. In PKC-delta-depleted cells treated with cisplatin, caspase-3 activation was increased and cell viability decreased. In these PKC-delta-depleted cells, PD98059 did not affect caspase-3 activation. CONCLUSIONS AND IMPLICATIONS In PC Cl3 cells, in the cell signalling pathways that lead to cisplatin resistance, PKC-delta controls ERK activity and, together with PKC-beta, also the induction of c-fos. Hence, the protective role of c-fos in thyroid cells has the potential to provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Yu JH, Wang HJ, Li XR, Tashiro SI, Onodera S, Ikejima T. Protein tyrosine kinase, JNK, and ERK involvement in pseudolaric acid B-induced apoptosis of human breast cancer MCF-7 cells. Acta Pharmacol Sin 2008; 29:1069-76. [PMID: 18718176 DOI: 10.1111/j.1745-7254.2008.00835.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To investigate the apoptotic mechanism of pseudolaric acid B (PAB) in human breast cancer MCF-7 cells. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide analysis and morphological changes were applied to detect apoptosis. The percentage of apoptotic and necrotic cells were calculated by the lactate dehydrogenase activity-based cytotoxicity assay, and the protein expression was examined by Western blot analysis. RESULTS PAB and/or the mitogen-activated protein kinases, including p38, c-Jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), did not participate in necrosis. P38 had no obvious function on apoptosis after 4 micromol/L PAB treatment for 36 h, but PAB induced JNK phosphorylation and inhibited ERK phosphorylation in the apoptotic process. In this study the inhibitor of protein tyrosine kinase (PTK) genistein inverted the inhibitory effect of PAB, instead promoting the survival of MCF-7 cells. Like genistein, another PTK inhibitor AG1024 had a similar effect on PAB-treated MCF-7 cells, indicating that PAB activated PTK to induce apoptosis. Together with PAB, genistein increased the expression of p-ERK, and decreased the expressions of JNK and p-JNK in PAB-treated MCF-7 cells at 36 h. And it is considered that the p-ERK and p-JNK were active patterns of ERK and JNK, respectively. CONCLUSION PTK were upstream of ERK and JNK, and PTK induced apoptosis through activating JNK and inactivating ERK in PAB-treated MCF-7 cells.
Collapse
Affiliation(s)
- Jing-hua Yu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|
9
|
Brozovic A, Osmak M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 2007; 251:1-16. [DOI: 10.1016/j.canlet.2006.10.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/07/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
|
10
|
McNicol A, Shibou TS, Pampolina C, Israels SJ. Incorporation of map kinases into the platelet cytoskeleton. Thromb Res 2001; 103:25-34. [PMID: 11434943 DOI: 10.1016/s0049-3848(01)00271-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Erk1 (p44) and erk2 (p42) mitogen-activated protein (MAP) kinases are activated in agonist-stimulated platelets, although their role(s) in the activation process is unknown. In the present study, erk1, erk2 and the phosphorylated forms of both enzymes became associated with the contractile cytoskeleton in thrombin-stimulated platelets. Enzyme incorporation was accompanied by an increase in MAP kinase activity in the cytoskeleton, which was inhibited by PD98059. Pretreatment of the platelets with the arginine-glycine-aspartic acid-serine (RGDS) polypeptide enhanced both the cytoskeletal association and the enzyme activity, but cytochalasin D had no significant effect. Platelets from a patient with Glanzmann's thrombasthenia lack the alpha(IIb)beta(3) integrin and form only a rudimentary cytoskeleton, however, this cytoskeleton is enriched with both erk1 and erk2. These data suggest either that MAP kinases play a role in cytoskeletal rearrangement or that the cytoskeleton act as a frame to align MAP kinases with substrates in a highly integrated signal transduction pathway.
Collapse
Affiliation(s)
- A McNicol
- Department of Oral Biology, University of Manitoba, R3E 0W2, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
11
|
Schaich M, Ritter M, Illmer T, Lisske P, Thiede C, Schäkel U, Mohr B, Ehninger G, Neubauer A. Mutations in ras proto-oncogenes are associated with lower mdr1 gene expression in adult acute myeloid leukaemia. Br J Haematol 2001; 112:300-7. [PMID: 11167822 DOI: 10.1046/j.1365-2141.2001.02562.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in ras genes have been found to be the most frequent genetic aberrations in adult myeloid leukaemia (AML). Some reports have shown an improved outcome of ras-mutated AML. In order to understand the biology of ras mutation in AML, we studied a cohort of patients treated in a prospective multicentre trial for ras mutational status and resistance gene expression. Blast samples from 162 adult patients with de novo or secondary AML were examined for resistance gene expression (mdr1, mrp1 and lrp) and ras mutations using reverse transcription-polymerase chain reaction and protein nucleic acid-competitive polymerase chain reaction strategies respectively. Ras mutations were confirmed using DNA sequencing. Ras mutations leading to an exchange of amino acids were found in 40 (25%) patients. Thirty AML patients had N-ras mutations and nine patients had K-ras mutations. One patient showed both N-ras and K-ras mutations. Resistance gene expression was positive for mdr1 in 30%, for mrp1 in 43% and for lrp in 62% of patients. There was a strong inverse correlation between the presence of ras mutation and mdr1 expression (P = 0.005). However, no significant difference was seen between patients with or without ras mutations and mrp1 or lrp expression. Whereas mdr1 expression was associated with a lower complete remission rate (P < 0.04), ras mutations had no significant influence on remission status. Neither ras mutation nor mdr1 expression had a significant impact on overall or disease-free survival to date. For the first time, there is evidence that activated ras genes are associated with lower mdr1 expression in AML.
Collapse
Affiliation(s)
- M Schaich
- Department of Medicine I, University Hospital Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cisplatin is among the most widely used broadly active cytotoxic anticancer drugs; however, its clinical efficacy is often limited by primary or the development of secondary resistance. Several mechanisms have been implicated in cisplatin resistance, including reduced drug uptake, increased cellular thiol/folate levels and increased DNA repair. More recently, additional pathways have been characterized indicating that altered expression of oncogenes that subsequently limit the formation of cisplatin-DNA adducts and activate anti-apoptotic pathways may also contribute to the resistance phenotype. Several lines of evidence suggest that expression of ras oncogenes can confer resistance to cisplatin by reducing drug uptake and increasing DNA repair; however, this is not a uniform finding. Tumor cells, in contrast to normal cells, respond to cisplatin exposure with transient gene expression to protect or repair their chromosomes. The c-fos/AP-1 complex, a master switch for turning on other genes in response to DNA-damaging agents, has been shown to play a major role in cisplatin resistance. In addition, AP-2 transcription factors, modulated by protein kinase A, are also implicated in cisplatin resistance by regulating genes encoding for DNA polymerase beta and metallothionines. Furthermore, considerable evidence indicates that mutated p53 plays a significant role in the development of cisplatin resistance since several genes implicated in drug resistance and apoptosis (e.g. mismatch repair, bcl-2, high mobility group proteins, DNA polymerases alpha and beta, PCNA, and insulin-like growth factor) are known to be regulated by the p53 oncoprotein. Improved understanding of molecular factors for the development of cisplatin resistance may allow the prediction of clinical response to cisplatin-based treatment. Furthermore, the identification of oncogenes involved in cisplatin resistance has already led to in vitro approaches which successfully inactivated these genes using ribozymes or antisense oligodeoxynucleotides, thus restoring cisplatin sensitivity. It is conceivable that these strategies, once transferred to a clinical setting, may have the potential to enhance the efficacy of cisplatin against a great variety of malignancies and thus more fully exploit the antineoplastic and curative potential of this drug.
Collapse
Affiliation(s)
- W Dempke
- Department of Internal Medicine, Martin-Luther-University, Halle/Saale, Germany.
| | | | | | | | | |
Collapse
|
13
|
Daniels I, Fletcher J, Haynes AP. Role of p38 in the priming of human neutrophils by peritoneal dialysis effluent. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:878-84. [PMID: 10548580 PMCID: PMC95792 DOI: 10.1128/cdli.6.6.878-884.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peritoneal dialysis effluent (PDE) contains a low-molecular-weight substance that is able to prime human neutrophils for the release of arachidonic acid and superoxide anion. Conventional priming agents, such as tumor necrosis factor alpha (TNF-alpha), are known to signal via mitogen-activated protein (MAP) kinases; at least one possible substrate for MAP kinases is cytosolic phospholipase A(2) (cPLA(2)). Phosphorylation of this enzyme results in arachidonic acid release, and this fatty acid is a potent primer and activator of the human neutrophil NADPH oxidase. Because of the striking similarities between the priming of neutrophils with agents such as TNF-alpha and PDE, we have investigated the signalling pathways evoked by PDE and explored the possibility that cPLA(2) is a target for activated MAP kinases. Our results show that PDE treatment of human neutrophils results in the phosphorylation of the p38 kinase rather than the p42 and p44 kinases. Phosphorylation of p38 is transient with maximal activity being observed 1 min after exposure to PDE. We were unable to demonstrate that activation of p38 resulted in phosphorylation of cPLA(2); furthermore, translocation of this enzyme to a membrane-containing fraction was not enhanced in PDE-treated neutrophils. Taken together, these data suggest that, in a manner similar to that of TNF-alpha, PDE primes human neutrophils by the activation of the p38 kinase. However, unlike the cytokine, the activation of this protein does not result in phosphorylation or activation of cPLA(2).
Collapse
Affiliation(s)
- I Daniels
- Medical Research Centre, City Hospital, Nottingham, United Kingdom.
| | | | | |
Collapse
|
14
|
Abstract
PURPOSE AND DESIGN The purpose of this review is to provide an overview of the literature linking Ras signaling pathways and leukemia and to discuss the biologic and potential therapeutic implications of these observations. A search of MEDLINE from 1966 to October 1998 was performed. RESULTS A wealth of data has been published on the role of Ras pathways in cancer. To be biologically active, Ras must move from the cytoplasm to the plasma membrane. Importantly, a posttranslational modification--addition of a farnesyl group to the Ras C-terminal cysteine--is a requisite for membrane localization of Ras. Farnesylation of Ras is catalyzed by an enzyme that is designated farnesyltransferase. Recently, several compounds have been developed that can inhibit farnesylation. Preclinical studies indicate that these molecules can suppress transformation and tumor growth in vitro and in animal models, with little toxicity to normal cells. CONCLUSION An increasing body of data suggests that disruption of Ras signaling pathways, either directly through mutations or indirectly through other genetic aberrations, is important in the pathogenesis of a wide variety of cancers. Molecules such as farnesyl transferase inhibitors that interfere with the function of Ras may be exploitable in leukemia (as well as in solid tumors) as novel antitumor agents.
Collapse
Affiliation(s)
- D M Beaupre
- Department of Bioimmunotherapy, the University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA
| | | |
Collapse
|
15
|
Pugin J, Kravchenko VV, Lee JD, Kline L, Ulevitch RJ, Tobias PS. Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14. Infect Immun 1998; 66:1174-80. [PMID: 9488411 PMCID: PMC108031 DOI: 10.1128/iai.66.3.1174-1180.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1997] [Accepted: 12/10/1997] [Indexed: 02/06/2023] Open
Abstract
CD14 is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein which functions as a receptor on myeloid cells for ligands derived from microbial pathogens such as lipopolysaccharide (LPS). We have studied the importance of the GPI tail of CD14 in signalling with the promonocytic cell line THP-1 expressing recombinant CD14 in a GPI-anchored form (THP1-wtCD14 cells) or in a transmembrane form (THP1-tmCD14). We found that, like other GPI-anchored molecules, GPI-anchored CD14 was recovered mainly from a Triton X-100-insoluble fraction, whereas transmembrane CD14 was fully soluble in Triton X-100. LPS induced cell activation of THP1-wtCD14 and of THP1-tmCD14 (protein tyrosine kinase phosphorylation, NF-kappaB activation, and cytokine production) in a very similar manner. However, anti-CD14 antibody-induced cross-linking caused a rapid calcium mobilization signal only in GPI-anchored CD14 cells. Studies with pharmacologic inhibitors of intracellular signalling events implicate phospholipase C and protein tyrosine kinases in the genesis of this antibody-induced calcium signal. Our results suggest that GPI anchoring and CD14 targeting to glycolipid-rich membrane microdomains are not required for LPS-mediated myeloid cell activation. GPI anchoring may however be important for other signalling functions, such as those events reflected by antibody cross-linking.
Collapse
Affiliation(s)
- J Pugin
- Division of Medical Intensive Care, University Hospital, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Tithof PK, Watts S, Ganey PE. Protein tyrosine kinase involvement in the production of superoxide anion by neutrophils exposed to Aroclor 1242, a mixture of polychlorinated biphenyls. Biochem Pharmacol 1997; 53:1833-42. [PMID: 9256158 DOI: 10.1016/s0006-2952(97)82447-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neutrophils produce superoxide anion (O2-) when exposed in vitro to Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs). The mechanism for this effect shares some similarities with the mechanism by which the physiologic agonist f-Met-Leu-Phe (fMLP) activates neutrophils. Since production of O2- in response to fMLP involves GTP-binding proteins and protein tyrosine kinases (PTKs), the current study was undertaken to determine whether these signalling pathways are involved in PCB-induced neutrophil activation. Neutrophils exposed to Aroclor 1242 or fMLP produced significant O2-. Pretreatment of intact neutrophils with pertussis toxin or cholera toxin or exposure of permeabilized cells to GDPbetaS significantly inhibited O2- production in fMLP-treated neutrophils but did not alter the response to Aroclor 1242. Pretreatment with genistein, an inhibitor of PTKs, significantly inhibited O2- production in both Aroclor 1242- and fMLP-treated neutrophils; however, daidzein, a structural analogue of genistein which lacks activity against PTKs, was without effect. Exposure of neutrophils to Aroclor 1242 resulted in an increase within 1 min in tyrosine phosphorylation of proteins in the 40 and 60 kDa molecular mass ranges which persisted for up to 10 min. Similar results were obtained with 2,2',4,4'-tetrachlorobiphenyl (2,2',4,4'-TCB), a PCB congener that stimulates O2- production. In contrast, 3,3',4,4',5-pentachlorobiphenyl (3,3',4,4',5-PeCB), a congener that does not generate O2-, caused only a transient increase in tyrosine phosphorylation of proteins in the 40 kDa range with no effect on 60 kDa proteins. These data suggest that Aroclor 1242 activates neutrophils to produce O2- by a mechanism that requires tyrosine kinase activity; however, heterotrimeric G-proteins are not likely to be involved.
Collapse
Affiliation(s)
- P K Tithof
- Department of Pharmacology and Toxicology, Institute for Environmental Toxicology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|