1
|
Zhu Q, Sun J, An C, Li X, Xu S, He Y, Zhang X, Liu L, Hu K, Liang M. Mechanism of LncRNA Gm2044 in germ cell development. Front Cell Dev Biol 2024; 12:1410914. [PMID: 39027044 PMCID: PMC11255455 DOI: 10.3389/fcell.2024.1410914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Germ cell development in mammals is a complex physiological process that involves the proliferation of primordial germ cells, meiosis, and the formation of male and female gametes. Long non-coding RNA (lncRNA) is a type of RNA with more than 200 nucleotides that does not code for proteins. A small number of lncRNAs have been shown to participate in spermatogenesis in the testes and in follicular development in the ovaries, but the role of the vast majority of lncRNAs and their molecular mechanisms still need further study. LncRNA Gm2044 was identified as a differentially expressed lncRNA in mouse spermatogenesis by microarray technology. In mouse testis, lncRNA Gm2044 can act as competing endogenous RNA to regulate SYCP1 expression in GC-2 cells derived from mouse spermatocyte cells, and it can also act as a host gene for miR-202 to regulate RBFOX2 protein expression. In female mouse ovaries, lncRNA Gm2044 regulates 17β-estradiol synthesis through the miRNA-138-5p-Nr5a1 pathway or by interacting with EEF2. In addition, studies suggest that lncRNA Gm2044 is also involved in the progression of reproductive system diseases such as male nonobstructive azoospermia. Here, we summarize the roles and molecular mechanisms of lncRNA Gm2044 in male and female gametogenesis and its potential role in some infertility disorders.
Collapse
Affiliation(s)
- Qinran Zhu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Junpei Sun
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Chuangchuang An
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Xin Li
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Shumin Xu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Yutong He
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Xinyi Zhang
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Lei Liu
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Wu X, Meng Y, Chen J, Zhang Y, Xu H. Ablation of Brg1 in fibroblast/myofibroblast lineages attenuates renal fibrosis in mice with diabetic nephropathy. Life Sci 2024; 344:122578. [PMID: 38537899 DOI: 10.1016/j.lfs.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
AIMS Diabetic nephropathy (DN) is one of the most common complications of diabetes and represents a prototypical form of chronic kidney disease (CKD). Interstitial fibrosis is a key pathological feature of DN. During DN-associated renal fibrosis, resident fibroblasts trans-differentiate into myofibroblasts to remodel the extracellular matrix, the underlying epigenetic mechanism of which is not entirely clear. METHODS Diabetic nephropathy was induced in C57B6/j mice by a single injection with streptozotocin (STZ). Gene expression was examined by quantitative PCR and Western blotting. Renal fibrosis was evaluated by PicroSirius Red staining. RESULTS We report that expression of Brg1, a chromatin remodeling protein, in renal fibroblasts was up-regulated during DN pathogenesis as assessed by single-cell RNA-seq. Treatment with high glucose similarly augmented Brg1 expression in primary renal fibroblasts in vitro. Importantly, Brg1 ablation in quiescent renal fibroblasts or in mature myofibroblasts equivalently attenuated renal fibrosis in the context of diabetic nephropathy in mice. Additionally, administration with a small-molecule Brg1 inhibitor PFI-3 ameliorated renal fibrosis and improved renal function in mice induced to develop DN. SIGNIFICANCE In conclusion, our data provide novel genetic evidence that links Brg1 to fibroblast-myofibroblast transition and renewed rationale for targeting Brg1 in the intervention of DN-associated renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yufei Meng
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jinsi Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yongchen Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Wu R, Wu C, Zhu B, Li J, Zhao W. Screening and validation of potential markers associated with uterine corpus endometrial carcinoma and polycystic ovary syndrome based on bioinformatics methods. Front Mol Biosci 2023; 10:1192313. [PMID: 37363398 PMCID: PMC10288877 DOI: 10.3389/fmolb.2023.1192313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Endometrial cancer (UCEC) is a commonly occurring tumor in females, and polycystic ovary syndrome (PCOS) is closely related to UCEC, but the molecular mechanisms remain unclear. This article aims to explore potential molecular mechanisms in UCEC and PCOS, as well as identify prognostic genes for UCEC. Methods: Bioinformatics methods were employed to screen for DEGs in UCEC and PCOS. The shared DEGs were analyzed by constructing a protein-protein interaction (PPI) network using the String database and Cytoscape software. The enrichment analysis was performed using Metascape. The shared DEGs associated with the prognosis of UCEC were identified through univariate and lasso Cox regression methods. A multivariate Cox regression model was constructed and internally validated. The expression and test efficiency of the key prognostic genes were verified using external datasets for UCEC and PCOS. Furthermore, the Gepia database was utilized to analyze the expression of key prognostic genes and their correlation with the disease-free survival (RFS) of UCEC. Tumor mutation burden (TMB), immune infiltration, and the correlation of immune cells were assessed for the prognostic genes of UCEC. Results: There were 151 shared DEGs identified between UCEC and PCOS through bioinformatics screening. These shared DEGs were primarily enriched in leukocyte activation. Following model construction and verification, nine genes were determined to be prognostic for UCEC from the shared DEGs. Among them, TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 were confirmed as prognostic genes in UCEC through external validation. Additionally, RTN1 was identified as a key gene in both UCEC and PCOS. Gepia analysis revealed that higher expression of RTN1 was associated with RFS in UCEC. Immune infiltration analysis of the shared DEGs demonstrated significant differences in the expression of various immune cells between UCEC high and low TMB groups. The seven key prognostic genes in UCEC exhibited regulatory relationships with immune cells. Conclusion: This study identified TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 as the key prognostic DEGs of UCEC. These genes are associated with UCEC survival, TMB, immune cell infiltration, and immune cell regulation. Among them, RTN1 may serve as a potential biomarker for both UCEC and PCOS.
Collapse
Affiliation(s)
- Ruishan Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Cailin Wu
- Department of Gynecology, The University of HongKong–Shenzhen Hospital, Shenzhen, China
| | - Bingming Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin Li
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenzhong Zhao
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| |
Collapse
|
5
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|
6
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|