1
|
Swaminathan S, Siddiqui AU, Gerst N, Pinkerton FD, Kisic A, Kim LJ, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis. Metabolism-based design and construction of a new analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and its effects in cultured mammalian cells and in rats. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)40062-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
Gerst N, Pinkerton FD, Kisic A, Wilson WK, Swaminathan S, Schroepfer G. Inhibitors of sterol synthesis. Effects of a new fluorinated analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one in rats. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)40100-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
3
|
Siddiqui AU, Gerst N, Kim LJ, Pinkerton FD, Kisic A, Wilson WK, Schroepfer GJ. Inhibitors of sterol synthesis: effects of a 7 alpha-alkyl analog of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured mammalian cells and on serum cholesterol levels and other parameters in rats. Chem Phys Lipids 1994; 70:163-78. [PMID: 8033288 DOI: 10.1016/0009-3084(94)90084-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 7 alpha-methyl analog (II) of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15- one (I) was prepared by chemical synthesis and evaluated with respect to its effects on HMG-CoA reductase activity in CHO-K1 cells and on serum cholesterol levels in rats. The 7 alpha-methyl substitution had no detectable effect on the potency of I in lowering HMG-CoA reductase activity in the cultured cells. In contrast, the 7 alpha-methyl substitution had a marked effect on the action of I in the suppression of food consumption in rats. Whereas II was less potent than I in lowering serum cholesterol levels in rats, it did so at dosage levels at which only slight or moderate effects on food consumption were observed. Full 1H and 13C-NMR assignments for II and intermediates in its synthesis have been presented. Conformational analysis, based on 1H-1H coupling constants, NMR shieldings and force-field calculations, indicated that the 7 alpha-methyl substitution had virtually no effect on the conformation of the 15-ketosterol apart from minor distortions of ring B.
Collapse
Affiliation(s)
- A U Siddiqui
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892
| | | | | | | | | | | | | |
Collapse
|
4
|
Inhibitors of sterol synthesis. A highly efficient and specific side-chain oxidation of 3 beta-acetoxy-5 alpha-cholest-8(14)-en-15-one for construction of metabolites and analogs of the 15-ketosterol. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41623-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
|
6
|
Pajewski TN, Brabson JS, Kisic A, Wang KS, Hylarides MD, Jackson EM, Schroepfer GJ. Inhibitors of sterol synthesis. Metabolism of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one after oral administration to a nonhuman primate. Chem Phys Lipids 1989; 49:243-63. [PMID: 2720860 DOI: 10.1016/0009-3084(89)90072-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
5 alpha-Cholest-8(14)-en-3 beta-ol-15-one is a potent inhibitor of cholesterol biosynthesis which has significant hypocholesterolemic activity upon oral administration to rodents and nonhuman primates. In the present study the metabolism of the 15-ketosterol has been investigated after the oral administration of a mixture of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one and [4-14C]cholesterol to 8 baboons. Blood samples were obtained at 4, 8, 12, 16, and 24 h after administration of the labeled sterols. Clear differences in the time courses of the levels of 3H and 14C in plasma were observed. 3H in plasma showed maximum values at 4 to 8 h, whereas maximum values for the levels of 14C were observed much later. 3H in plasma was shown to be primarily in the form of its metabolites, i.e. esters of the 15-ketosterol, cholesterol, and cholesteryl esters. The levels of the 15-ketosterol and of each of these metabolites showed different changes with time. The labeled cholesterol (and the cholesterol moiety of the cholesteryl esters), formed from the [2,4-3H]-15-ketosterol, was characterized by chromatography and by purification by way of its dibromide derivative. At 24 h after the administration of the labeled sterols, the distribution of 3H in plasma lipoprotein fractions paralleled that of 14C, with most of the 3H and 14C in high density lipoprotiens (HDL) and low density lipoproteins (LDL). Almost all of the 3H in HDL and in LDL was found as cholesterol, cholesteryl esters and esters of the 15-ketosterol. The distribution of 3H in HDL and in LDL of the free 15-ketosterol, esters of the 15-ketosterol, cholesterol, and cholesteryl esters was similar to that of plasma, thereby indicating no unusual concentration of any of the 3H labeled components in HDL or LDL.
Collapse
Affiliation(s)
- T N Pajewski
- Department of Biochemistry, Rice University, Houston, TX 77251
| | | | | | | | | | | | | |
Collapse
|
7
|
Pajewski TN, Pinkerton FD, Miller LR, Schroepfer GJ. Inhibitors of sterol synthesis. Studies of the metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one in Chinese hamster ovary cells and its effects on activities of early enzymes in cholesterol biosynthesis. Chem Phys Lipids 1988; 48:153-68. [PMID: 2907421 DOI: 10.1016/0009-3084(88)90086-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The metabolism of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I) has been studied in Chinese hamster ovary (CHO-K1) cells which were maintained in a lipid-deficient medium. The incorporation of I into the cells was linear with respect to sterol concentration in the medium over the ranges of concentrations studied and was more than 3.5 times that of the uptake of cholesterol. The results of detailed chromatographic analyses of the lipids recovered from the cells after 6 h of incubation with [2,4-3H]I (0.5 microM or 6.0 microM) indicated that most of the 3H was associated with free I. Considerably lesser amounts of the 3H was associated with esters of I. No formation of [3H]cholesterol or [3H]cholesteryl esters (or other C27 monohydroxysterols) from labeled I was observed. The labeled material with the chromatographic behavior of the esters of I gave, after mild alkaline hydrolysis, the free 15-ketosterol which was characterized by the results of chromatographic and cocrystallization studies. Upon transfer of the CHO-K1 cells from a culture medium containing 8% newborn calf serum to the same medium containing 8% lipid-deficient newborn calf serum, increases in the levels of activity of cytosolic acetoacetyl-CoA thiolase and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase and of HMG-CoA reductase were observed. These increases were blocked by the addition of I at a concentration of 1.0 microM. I (1.0 microM) also caused a decrease in the levels of activity of the three enzymes in cells previously grown in medium containing lipid-deficient serum. These results demonstrate that I not only affects the enzymatic reduction of HMG-CoA but also the enzymatic formation of this key intermediate in cholesterol biosynthesis.
Collapse
Affiliation(s)
- T N Pajewski
- Department of Biochemistry and Chemistry, Rice University, Houston, TX 77251
| | | | | | | |
Collapse
|
8
|
Schroepfer GJ, Christophe A, Chu AJ, Izumi A, Kisic A, Sherrill BC. Inhibitors of sterol synthesis. A major role of chylomicrons in the metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one in the rat. Chem Phys Lipids 1988; 48:29-58. [PMID: 3208415 DOI: 10.1016/0009-3084(88)90131-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I), a potent regulator of cholesterol (Chol) metabolism which has significant hypocholesterolemic activity upon oral administration to animals, has been investigated in male rats. After intragastric administration of [2,4-3H] I and [4-14C]Chol in triolein to intestinal lymph duct-cannulated rats, most of the 3H of the lymph was associated with chylomicrons. Most of the 3H in the chylomicrons was associated with fatty acid esters of I and the oleate ester represented the major species of the esters of I. After intravenous injection of the isolated doubly-labeled chylomicrons to intact rats, rapid clearance of 3H and 14C from blood was observed which was associated with a rapid and selective uptake of 3H and 14C by liver. The rate of disappearance of 3H from blood and the rate of uptake of 3H by liver were similar, if not identical, to those for 14C. In contrast, the disappearance of 3H from the liver was much more rapid than that of 14C. Studies of the distribution of 3H in liver demonstrated rapid formation of free I and the formation of [3H]Chol. In addition, significant amounts of the 3H in liver were associated with polar materials, a finding which was not observed in the case of 14C. After intravenous administration of the doubly-labeled chylomicrons to bile duct-cannulated rats, very rapid and substantial metabolism of the administered 3H to polar biliary metabolites was observed. The bulk of the 3H not recovered in bile at 49 h after the injection of the labeled chylomicrons was recovered in blood and tissues and almost all (integral of 94%) of this material was associated with Chol and Chol esters. The combined results indicate an important role for chylomicrons in the overall metabolism of I. The selective delivery of I to liver as its oleate ester in chylomicrons (or, more probably, as chylomicron remnants) and the subsequent metabolism of the oleate ester of I in liver has important consequences with respect to the actions of I which are discussed herein.
Collapse
Affiliation(s)
- G J Schroepfer
- Department of Biochemistry, Rice University, Houston, Texas
| | | | | | | | | | | |
Collapse
|
9
|
Emmons GT, St Pyrek J, Dam R, Martin M, Kudo K, Schroepfer GJ. 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, a potent regulator of cholesterol metabolism: occurrence in rat skin. J Lipid Res 1988. [DOI: 10.1016/s0022-2275(20)38468-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Brabson JS, Schroepfer GJ. Inhibitors of sterol synthesis. Studies of the distribution and metabolism of 5 alpha-[2,4-3H]cholest-8(14)-en-3 beta-ol-15-one after intragastric administration to rats. Steroids 1988; 52:51-68. [PMID: 3247671 DOI: 10.1016/0039-128x(88)90217-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5 alpha-[2,4-3H]Cholest-8(14)-en-3 beta-ol-15-one was administered to a series of male Sprague-Dawley rats by intragastric intubation in the form of an emulsion in a mixture of triolein, sodium taurocholate, bovine serum albumin, and glucose. [4-14C]Cholesterol was similarly administered to a second series of rats. The distribution of 3H and 14C was studied at 12 and 48 h after the administration of the sterols. The results demonstrated that the 15-ketosterol is absorbed and metabolized to material with the chromatographic properties of fatty acid esters of the 15-ketosterol, to cholesterol, and to fatty acid esters of cholesterol. The [3H]cholesterol formed from the 15-ketosterol was characterized by its behavior on silicic acid-Super Cel column chromatography, by the chromatographic behavior of its acetate derivative on alumina-AgNO3 column chromatography, and by purification by way of its dibromide derivative without significant change in specific activity. The general distribution of 3H was similar to that of 14C. No unusual concentration of 3H in any of the organs studied was observed.
Collapse
Affiliation(s)
- J S Brabson
- Department of Biochemistry, Rice University, Houston, TX 77251
| | | |
Collapse
|
11
|
Brabson JS, Schroepfer GJ. Inhibitors of sterol synthesis. The effects of dietary 5 alpha-cholest-8(14)-en-3 beta-ol-15-one on the fate of [4-14C]cholesterol and [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one after intragastric administration to rats. Chem Phys Lipids 1988; 47:1-20. [PMID: 3396132 DOI: 10.1016/0009-3084(88)90029-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of dietary administration (0.1% in a rat chow diet) of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, a potent inhibitor of cholesterol biosynthesis with marked hypocholesterolemic activity, on the fate of [4-14C]cholesterol and [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one has been studied after intragastric administration of the labeled sterols to rats. In general, the distribution of 3H in major tissues paralleled that of 14C with no unusual concentration of 3H in any of the organs. Only trace amounts of 3H and 14C were recovered in urine. Administration of the 15-ketosterol was associated with decreased absorption of the labeled cholesterol as indicated by decreased levels of 14C in the various tissues and organs of the 15-ketosterol-treated rats (relative to ad libitum and pair-fed control animals) and increased levels of 14C in feces and intestinal contents at 12 and 48 h after the administration of the labeled cholesterol. Studies of the distribution of 3H in liver indicated rapid conversion of the 15-ketosterol to cholesterol and cholesteryl esters. The amounts of 3H recovered in the various tissues and organs at both 12 and 48 h after the administration of the labeled sterols were considerably less than the corresponding values for 14C, a finding which suggests a lower absorption of the 15-ketosterol (relative to cholesterol) and/or a more rapid clearance and biliary excretion of the 15-ketosterol and its metabolites.
Collapse
Affiliation(s)
- J S Brabson
- Department of Biochemistry, Rice University, Houston, TX 77251
| | | |
Collapse
|
12
|
Schroepfer GJ, Kisic A, Izumi A, Wang KS, Carey KD, Chu AJ. Inhibitors of sterol synthesis. Metabolism of [2,4-3H]5 alpha-cholest-8(14-)-en-3 beta-ol-15-one after intravenous administration to a nonhuman primate. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68896-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Inhibitors of sterol synthesis. Metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one after intravenous administration to bile duct-cannulated rats. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68897-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Inhibitors of sterol synthesis. Reverse phase high performance liquid chromatography for the separation of cholesterol, 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, and their fatty acid esters. J Lipid Res 1988. [DOI: 10.1016/s0022-2275(20)38554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Miller LR, Needleman DH, Brabson JS, Wang KS, Schroepfer GJ. 5 alpha-cholest-8(14)-en-3 beta-ol-15-one. A competitive substrate for acyl coenzyme A:cholesterol acyl transferase. Biochem Biophys Res Commun 1987; 148:934-40. [PMID: 3689404 DOI: 10.1016/s0006-291x(87)80222-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
5 alpha-Cholest-8(14)-en-3 beta-ol-15-one, a potent inhibitor of cholesterol biosynthesis with hypocholesterolemic activity, has been found to serve as an efficient substrate for acyl CoA:cholesterol acyl transferase of rat hepatic and jejunal microsomes and to inhibit the esterification of cholesterol. Concentrations required to give 50% inhibition of cholesterol ester formation in liver and jejunal microsomes were approximately 10 microM and approximately 3 microM, respectively.
Collapse
Affiliation(s)
- L R Miller
- Department of Biochemistry, Rice University, Houston, TX 77251
| | | | | | | | | |
Collapse
|
16
|
Inhibitors of sterol synthesis. Spectral characterization of derivatives of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one. J Lipid Res 1987. [DOI: 10.1016/s0022-2275(20)38594-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Schroepfer GJ, Pajewski TN, Hylarides M, Kisic A. 5 alpha-Cholest-8(14)-en-3 beta-ol-15-one. In vivo conversion to cholesterol upon oral administration to a nonhuman primate. Biochem Biophys Res Commun 1987; 146:1027-32. [PMID: 3619912 DOI: 10.1016/0006-291x(87)90750-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one (I), a potent inhibitor of cholesterol synthesis with marked hypocholesteremic activity, has been studied in a nonhuman primate. A mixture of [2,4-3H]-I and [4-14C]-cholesterol was administered to a male baboon in the form of a feedball. Blood was samples at 4, 8, 12, 16, and 24 hr. Detailed analyses of the plasma lipids indicated very rapid absorption of I (relative to cholesterol) and metabolism to cholesterol, cholesteryl esters, and esters of I. The labeled cholesterol was characterized by chromatographic techniques and by purification by way of its dibromide derivative. The levels of 3H in plasma associated with I, esters of I, cholesterol, and cholesteryl esters each showed a different time course. By 24 hr after the administration of [2,4-3H]-I, most of the 3H in plasma was associated with cholesterol and cholesteryl esters. The levels of total 3H and 14C in plasma at various times after the administration of the mixture of [2,4-3H]-I and [4-14C]-cholesterol differed markedly with 3H showing a maximum value at 4 hr and 14C showing a maximum value at 24 hr.
Collapse
|
18
|
|
19
|
|