1
|
Shojaei M, Zhou Q, Palumbo G, Schaefer R, Kaskinoro J, Vehmaan-Kreula P, Bartenstein P, Brendel M, Edbauer D, Lindner S. Development and Preclinical Evaluation of a Copper-64-Labeled Antibody Targeting Glycine-Alanine Dipeptides for PET Imaging of C9orf72-Associated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. ACS Pharmacol Transl Sci 2024; 7:1404-1414. [PMID: 38751620 PMCID: PMC11091963 DOI: 10.1021/acsptsci.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Aggregating poly(glycine-alanine) (poly-GA) is derived from the unconventional translation of the pathogenic intronic hexanucleotide repeat expansion in the C9orf72 gene, which is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly-GA accumulates predominantly in neuronal cytoplasmic inclusions unique to C9orf72 ALS/FTD patients. Poly-GA is, therefore, a promising target for PET/CT imaging of FTD/ALS to monitor disease progression and therapeutic interventions. A novel 64Cu-labeled anti-GA antibody (mAb1A12) targeting the poly-GA protein was developed and evaluated in a transgenic mouse model. It was obtained with high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity, and showed high stability in vitro and ex vivo and specifically bound to poly-GA. The affinity of NODAGA-mAb1A12 for poly-GA was not affected by this modification. [64Cu]Cu-NODAGA-mAb1A12 was injected into transgenic mice expressing GFP-(GA)175 in excitatory neurons driven by Camk2a-Cre and in control littermates. PET/CT imaging was performed at 2, 20, and 40 h post-injection (p.i.) and revealed a higher accumulation in the cortex in transgenic mice than in wild-type mice, as reflected by higher standardized uptake value ratios (SUVR) using the cerebellum as the reference region. The organs were isolated for biodistribution and ex vivo autoradiography. Autoradiography revealed a higher cortex-to-cerebellum ratio in the transgenic mice than in the controls. Results from autoradiography were validated by immunohistochemistry and poly-GA immunoassays. Moreover, we confirmed antibody uptake in the CNS in a pharmacokinetic study of the perfused tissues. In summary, [64Cu]Cu-NODAGA-mAb1A12 demonstrated favorable in vitro characteristics and an increased relative binding in poly-GA transgenic mice compared to wild-type mice in vivo. Our results with this first-in-class radiotracer suggested that targeting poly-GA is a promising approach for PET/CT imaging in FTD/ALS.
Collapse
Affiliation(s)
- Monireh Shojaei
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | - Qihui Zhou
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Giovanna Palumbo
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | - Rebecca Schaefer
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| | | | | | - Peter Bartenstein
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Matthias Brendel
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Dieter Edbauer
- German
Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich
Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Simon Lindner
- Department
of Nuclear Medicine, University Hospital,
LMU Munich, 81377 Munich, Germany
| |
Collapse
|
2
|
Pometti MA, Di Natale G, Geremia G, Gauswami N, Garufi G, Ricciardi G, Sciortino M, Scopelliti F, Russo G, Ippolito M. A Kinetically Controlled Bioconjugation Method for the Synthesis of Radioimmunoconjugates and the Development of a Domain Mapping MS-Workflow for Its Characterization. Bioconjug Chem 2024; 35:324-332. [PMID: 38366964 PMCID: PMC10961728 DOI: 10.1021/acs.bioconjchem.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Immunoconjugates exploit the high affinity of monoclonal antibodies for a recognized antigen to selectively deliver a cytotoxic payload, such as drugs or radioactive nuclides, at the site of disease. Despite numerous techniques have been recently developed for site-selective bioconjugations of protein structures, reaction of ε-amine group of lysine residues with electrophilic reactants, such as activated esters (NHS), is the main method reported in the literature as it maintains proteins in their native conformation. Since antibodies hold a high number of lysine residues, a heterogeneous mixture of conjugates will be generated, which can result in decreased target affinity. Here, we report an intradomain regioselective bioconjugation between the monoclonal antibody Trastuzumab and the N-hydroxysuccinimide ester of the chelator 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) by a kinetically controlled reaction adding substoichiometric quantities of the activated ester to the mAb working at slightly basic pH. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out to assess the chelator-antibody ratio (CAR) and the number of chelating moieties linked to the mAb chains. Proteolysis experiments showed four lysine residues mainly involved in bioconjugation (K188 for the light chain and K30, K293, and K417 for the heavy chain), each of which was located in a different domain. Since the displayed intradomain regioselectivity, a domain mapping MS-workflow, based on a selective domain denaturation, was developed to quantify the percentage of chelator linked to each mAb domain. The resulting immunoconjugate mixture showed an average CAR of 0.9. About a third of the heavy chains were found as monoconjugated, whereas conjugation of the chelator in the light chain was negligible. Domain mapping showed the CH3 domain bearing 13% of conjugated DOTA, followed by CH2 and VH respectively bearing 12.5 and 11% of bonded chelator. Bioconjugation was not found in the CH1 domain, whereas for the light chain, only the CL domain was conjugated (6%). Data analysis based on LC-MS quantification of different analytical levels (intact, reduced chains, and domains) provided the immunoconjugate formulation. A mixture of immunoconjugates restricted to 15 species was obtained, and the percentage of each one within the mixture was calculated. In particular, species bearing 1 DOTA with a relative abundance ranging from 4 to 20-fold, in comparison to species bearing 2DOTA, were observed. Pairing of bioconjugation under kinetic control with the developed domain mapping MS-workflow could raise the standard of chemical quality for immunoconjugates obtained with commercially available reactants.
Collapse
Affiliation(s)
- Marco A. Pometti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Giuseppe Di Natale
- CNR-Istituto
di Cristallografia, Via
Paolo Gaifami 18, 95126 Catania, Italy
| | - Giancarlo Geremia
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Nileshgiri Gauswami
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Gianni Garufi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Giuseppina Ricciardi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Marcella Sciortino
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Fabrizio Scopelliti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Giorgio Russo
- IBFM-CNR
Institute of Molecular Bioimaging and Physiology, Contrada Pietra Pollastra, 90015 Cefalù, Italy
| | - Massimo Ippolito
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
3
|
Miranda ACC, dos Santos SN, Fuscaldi LL, Balieiro LM, Bellini MH, Guimarães MICC, de Araújo EB. Radioimmunotheranostic Pair Based on the Anti-HER2 Monoclonal Antibody: Influence of Chelating Agents and Radionuclides on Biological Properties. Pharmaceutics 2021; 13:971. [PMID: 34198999 PMCID: PMC8309196 DOI: 10.3390/pharmaceutics13070971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.
Collapse
Affiliation(s)
- Ana Cláudia Camargo Miranda
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, Sao Paulo 05652-900, Brazil
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Sofia Nascimento dos Santos
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Leonardo Lima Fuscaldi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo 01221-020, Brazil;
| | - Luiza Mascarenhas Balieiro
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Helena Bellini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| | - Maria Inês Calil Cury Guimarães
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-911, Brazil;
| | - Elaine Bortoleti de Araújo
- Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, Sao Paulo 05508-000, Brazil; (S.N.d.S.); (L.M.B.); (M.H.B.); (E.B.d.A.)
| |
Collapse
|
4
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
5
|
Lee W, Sarkar S, Pal R, Kim JY, Park H, Huynh PT, Bhise A, Bobba KN, Kim KI, Ha YS, Soni N, Kim W, Lee K, Jung JM, Rajkumar S, Lee KC, Yoo J. Successful Application of CuAAC Click Reaction in Constructing 64Cu-Labeled Antibody Conjugates for Immuno-PET Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2544-2557. [PMID: 35014372 DOI: 10.1021/acsabm.0c01555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Rammyani Pal
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kondapa Naidu Bobba
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Nisarg Soni
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Wanook Kim
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
6
|
Jarrett AM, Hormuth DA, Adhikarla V, Sahoo P, Abler D, Tumyan L, Schmolze D, Mortimer J, Rockne RC, Yankeelov TE. Towards integration of 64Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer. Sci Rep 2020; 10:20518. [PMID: 33239688 PMCID: PMC7688955 DOI: 10.1038/s41598-020-77397-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients treated with the same therapeutic regimen but who achieved different treatment outcomes. Quantitative data from magnetic resonance imaging (MRI) and 64Cu-DOTA-trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the data sets to a common image space to enable model calibration. Once the model is parameterized with these data, we forecast treatment response with and without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting predictions are able to distinguish between the two different patient responses, increasing the difference in tumor volume change between the two patients by > 40%. This work provides a proof-of-concept strategy for processing and integrating PET and MRI modalities into a predictive, clinical-mathematical framework to provide patient-specific predictions of HER2 + treatment response.
Collapse
Affiliation(s)
- Angela M Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas At Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - David A Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas At Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg. 74, Duarte, CA, 91010, USA
| | - Prativa Sahoo
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg. 74, Duarte, CA, 91010, USA
| | - Daniel Abler
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg. 74, Duarte, CA, 91010, USA
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Lusine Tumyan
- Department of Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg. 74, Duarte, CA, 91010, USA.
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas At Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Rangger C, Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals (Basel) 2020; 13:E22. [PMID: 32019275 PMCID: PMC7169460 DOI: 10.3390/ph13020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials.
Collapse
Affiliation(s)
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| |
Collapse
|
8
|
Zaheer J, Kim H, Lee YJ, Lim SM, Kim JS. Comparison between Fractionated Dose and Single Dose of Cu-64 Trastuzumab Therapy in the NCI-N87 Gastric Cancer Mouse Model. Int J Mol Sci 2019; 20:ijms20194708. [PMID: 31547586 PMCID: PMC6801605 DOI: 10.3390/ijms20194708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 11/16/2022] Open
Abstract
For optimum radioimmunotherapy (RIT), deep penetration and uniform distribution into the tumor core is important. The solid tumor microenvironment, consisting of a highly fibrotic or desmoplastic tumor, abnormal tumor vasculature, high fluid pressure, and the absence of fluid lymphatics, limits the distribution of monoclonal antibodies mAbs to the tumor core. To investigate the optimal rationale for therapeutic mAbs administration and the microdistribution of mAbs, single and serial fractional dosage regimens of Cu-64-trastuzumab (TRZ) with paclitaxel were evaluated. Groups of nude mice were inoculated with gastric cancer cell line NCI-N87 tumor cells. When the tumor size reached 200 ± 20 mm3, the mice were divided into two groups for injection of Alexa-647-TRZ. One group (n = 5) was injected with 15 mg/kg in a single dose (SD), and the other group (n = 5) with two doses of 7.5 mg/kg (fractionated dose (FD)). In both cases, the injections were done intravenously in combination with intraperitoneal paclitaxel either as a SD of 70 mg/kg or fractionated into two doses of 40 and 30 mg/kg. Tumors were harvested, flash frozen, and sectioned (8 µm) five days after Alexa-647-TRZ injection. Rhodamine lectin (rhodamine-labeled Ricinus communis agglutinin I, 1 mg in 0.2 mL of phosphate-buffered saline (PBS)) was intravenously injected to delineate the functional vessel for a wait time of 5 min before animal euthanization. Microscopic images were acquired with an IN Cell Analyzer. The amount of TRZ that penetrated the tumor surface and the tumor vessel was calculated by area under the curve (AUC) analysis. For RIT efficacy (n = 21), Cu-64-TRZ was injected following the same dose schedule to observe tumor volume and survival ratio for 30 days. The SD and FD regimens of Alexa-647-TRZ were observed to have no significant difference in penetration of mAbs from the tumor edge and vessel, nor was the total accumulation across the whole tumor tissue significantly different. Additionally, the SD and FD regimens of Cu-64-TRZ were not proven to be significantly efficacious. Our study reveals that SD and FD in a treatment design with Cu-64-TRZ and paclitaxel shows no significant difference in therapeutic efficacy on tumor growth inhibition in vivo in mice bearing human gastric cancer xenografts overexpressing HER2 antigen.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
| | - Hyeongi Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
| | - Yong-Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
| | - Sang Moo Lim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
| | - Jin Su Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea.
| |
Collapse
|
9
|
Kristensen LK, Christensen C, Jensen MM, Agnew BJ, Schjöth-Frydendahl C, Kjaer A, Nielsen CH. Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model. Theranostics 2019; 9:4409-4420. [PMID: 31285769 PMCID: PMC6599660 DOI: 10.7150/thno.32883] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Antibody-based PET tracers are exceptionally well-suited for determination of the in vivo biodistribution and quantification of therapeutic antibodies. The continued expansion in antibody-based therapeutics has accordingly driven the development towards more robust conjugation strategies in order to reliably predict the performance of such agents. We therefore aimed to evaluate the effect of site-specific labeling by enzymatic remodeling on the stability, immuno-reactivity and tumor-targeting properties of the monoclonal antibody (mAb) trastuzumab and compare it to conventional, random labeling in a HER2-positive xenograft mouse model. Methods: Trastuzumab was conjugated with the p-SCN-Bn-Desferrioxamine (SCN-Bn-DFO) chelator randomly on lysine residues or site-specifically on enzymatically modified glycans using either β-galactosidase or endoglycosidase S2 prior to 89Zr radiolabeling. 89Zr-DFO-trastuzumab was injected into SK-OV-3 tumor-bearing NMRI nude mice. The antibody dose was titrated with either 100 µg or 500 µg of unlabeled trastuzumab. Mice underwent small animal PET/CT imaging 24, 70 and 120 hours post-injection for longitudinal assessment. Parallel experiments were conducted with an isotype control matched antibody. In vivo imaging was supported by conventional ex vivo biodistribution and HER2 immuno-histochemistry. Furthermore, site-specifically labeled 89Zr-DFO-trastuzumab was evaluated in a panel of subcutaneous patient-derived xenograft (PDX) models. Additionally, the affinity, in vitro stability and immuno-reactivity were assessed for all tracers. Results: Site-specific labeling significantly increased PET tumor uptake (One-way ANOVA, p<0.0001) at all time-points when compared to random labeling. Mean tumor uptakes were 6.7 ± 1.7, 13.9 ± 3.3 and 15.3 ± 3.8 % injected dose per gram tissue (%ID/g) at 70 hours post-injection, for random, β-galactosidase or endoglycosidase S2 labeled probes, respectively. Co-injection with unlabeled trastuzumab increased the circulation time of tracers but did not alter tumor uptake notably. Site-specific probes presented with a superior in vitro stability and immuno-reactivity compared to the randomly labeled probe. Ex vivo biodistribution confirmed the data obtained by in vivo PET imaging, and site-specific 89Zr-DFO-trastuzumab successfully detected HER2-positive tumors in PDX mouse models. Conclusion: 89Zr-DFO-trastuzumab is well-matched for specific immuno-PET imaging of HER2-positive tumors and site-specific labeling of trastuzumab by the SiteClickTM technology minimizes the impact of the DFO chelator on immuno-reactivity, stability and biodistribution. These findings support further development of site-specifically radiolabeled mAbs for immuno-PET.
Collapse
|
10
|
Skovsgaard MB, Jeppesen TE, Mortensen MR, Nielsen CH, Madsen J, Kjaer A, Gothelf KV. Affinity-Guided Conjugation to Antibodies for Use in Positron Emission Tomography. Bioconjug Chem 2019; 30:881-887. [DOI: 10.1021/acs.bioconjchem.9b00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikkel B. Skovsgaard
- iNANO and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Troels E. Jeppesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen N, Denmark
| | - Michael R. Mortensen
- iNANO and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Carsten H. Nielsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen N, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen N, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen N, Denmark
| | - Kurt V. Gothelf
- iNANO and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Guo X, Zhu H, Zhou N, Chen Z, Liu T, Liu F, Xu X, Jin H, Shen L, Gao J, Yang Z. Noninvasive Detection of HER2 Expression in Gastric Cancer by 64Cu-NOTA-Trastuzumab in PDX Mouse Model and in Patients. Mol Pharm 2018; 15:5174-5182. [PMID: 30251865 DOI: 10.1021/acs.molpharmaceut.8b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to establish the quality control and quantify the novel 64Cu-NOTA-Trastuzumab in gastric cancer patient-derived xenografts (PDX) mice models and patients by applying the molecular imaging technique. Trastuzumab was labeled with 64Cu using NCS-Bz-NOTA as bifunctional chelator, and hIgG1 was labeled with the same procedures as a negative control agent. HER2-positive (case 176, n = 12) and HER2-negative (case 168, n = 3) PDX models were established and validated by Western blot, DNA amplification, and immunohistochemistry (IHC). Both models were conducted for micro-PET imaging by tail injection of 18.5 MBq of 64Cu-NOTA-Trastuzumab or 64Cu-NOTA-hIgG1. Radioprobe uptake in tumor and main organs was quantified by region of interested (ROI) analysis of the micro-PET images and autoradiography. Finally, gastric cancer patients were enrolled in preliminary 64Cu-NOTA-Trastuzumab PET/CT scans. NOTA-Trastuzumab was efficiently radiolabeled with 64Cu over a 99% radiochemical purity and 17.5 GBq/μmol specific activity. The immune activity was preserved as the nonmodified antibody, and the radiopharmaceutical proved to be stable for up to 5 half-decay lives of 64Cu both in vitro and in vivo. Two serials of PDX gastric cancer models were successfully established: case 176 for HER2 positive and case 168 for HER2 negative. In micro-PET imaging studies, 64Cu-NOTA-Trastuzumab exhibits a significant higher tumor uptake (11.45 ± 0.42 ID%/g) compared with 64Cu-NOTA-IgG1 (3.25 ± 0.28 ID%/g, n = 5, p = 0.0004) at 36 h after intravenous injection. Lower level uptake of 64Cu-NOTA-Trastuzumab (6.35 ± 0.48 ID%/g) in HER2-negative PDX tumor models further confirmed specific binding of the radioprobe. Interestingly, the coinjection of 2.0 mg of Trastuzumab (15.52 ± 1.97 ID%/g) or 2.0 mg of hIgG1 (15.64 ± 3.54 ID%/g) increased the 64Cu-NOTA-Trastuzumab tumor uptake in PDX tumor (HER2+) models compared with 64Cu-NOTA-Trastuzumab alone ( p < 0.05) at 36 h postinjection. There were good correlations between micro-PET images and IHC ( n = 4) and autoradiography in PDX (HER2+) tumor tissues. Therefore, 64Cu-NOTA-Trastuzumab successfully translated to clinical PET imaging, and 64Cu-NOTA-Trastuzumab PET/CT scan in gastric cancer patients showed good detection ability. In conclusion, we reported quality control and application of novel 64Cu-NOTA-Trastuzumab for HER2 expression in PDX gastric cancer mice models and gastric cancer patients. Moreover, 64Cu-NOTA-Trastuzumab holds great potential for noninvasive PET detection, staging, and follow-up of HER2 expression in gastric cancer.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zuhua Chen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hongjun Jin
- Research Center of Molecular Imaging and Engineering , Sun Yat-sen University, the Fifth Affiliation Hospital , Zhuhai , Guangdong Province 519000 , China
| | - Lin Shen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Jing Gao
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| |
Collapse
|
12
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
13
|
Moreau M, Poty S, Vrigneaud JM, Walker P, Guillemin M, Raguin O, Oudot A, Bernhard C, Goze C, Boschetti F, Collin B, Brunotte F, Denat F. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET. Dalton Trans 2017; 46:14659-14668. [DOI: 10.1039/c7dt01772c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison of four bifunctional chelating agents showed superior behaviour of a new NOTA derivative for 64Cu labelling of antibody fragments.
Collapse
|
14
|
Halime Z, Frindel M, Camus N, Orain PY, Lacombe M, Bernardeau K, Chérel M, Gestin JF, Faivre-Chauvet A, Tripier R. New synthesis of phenyl-isothiocyanate C-functionalised cyclams. Bioconjugation and (64)Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative. Org Biomol Chem 2016; 13:11302-14. [PMID: 26419637 DOI: 10.1039/c5ob01618e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Azamacrocyclic bifunctional chelating agents (BCAs) are essential for the development of radiopharmaceuticals in nuclear medicine and we wish to prove that their bioconjugation by a function present on a carbon atom of the macrocyclic skeleton is a solution of choice to maintain their in vivo inertness. Based on our very recent methodology using a bisaminal template and selective N-alkylation approach, a new synthesis of conjugable C-functionalised teta, te2a and cb-te2a has been developed. These chelators have indeed a growing interest in nuclear medicine for positron emission tomography (PET) and radioimmunotherapy (RIT) where they show in several cases better complexation properties than dota or dota-like macrocycles, especially with (64)Cu or (67)Cu radioisotopes. Chelators are bearing an isothiocyanate grafting function introduced by C-alkylation to avoid as much as possible a critical decrease of their chelating properties. The synthesis is very efficient and yields the targeted ligands, teta-Ph-NCS, te2a-Ph-NCS and cb-te2a-Ph-NCS without fastidious work-up and could be easily extended to other cyclam based-BCAs. The newly synthetised te2a-Ph-NCS has been conjugated to an anti mCD138 monoclonal antibody (mAb) to evaluate its in vivo behavior and potentiality as BCA and to explore a first attempt of PET-phenotypic imaging in multiple myeloma (MM). Mass spectrometry analysis of the immunoconjugate showed that up to 4 chelates were conjugated per 9E7.4 mAb. The radiolabeling yield and specific activity post-purification of the bioconjugate 9E7.4-CSN-Ph-te2a were 95 ± 2.8% and 188 ± 27 MBq mg(-1) respectively and the immunoreactivity of (64)Cu-9E7.4-CSN-Ph-te2a was 81 ± 7%. Animal experiments were carried out on 5T33-Luc(+) tumor bearing mice, either in subcutaneous or orthotopic. To achieve PET imaging, mice were injected with (64)Cu-9E7.4-CNS-Ph-te2a and acquisitions were conducted 2 and 20 h post-injection (PI). A millimetric bone uptake was localised in a sacroiliac of a MM orthotopic tumor. Nonspecific uptakes were observed at 2 h PI but, unlike for the tumor, a significant decrease was observed at 20 h PI which improves the contrast of the images.
Collapse
Affiliation(s)
- Zakaria Halime
- Université de Brest, UMR-CNRS 6521/SFR148 ScInBioS, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | - Mathieu Frindel
- Université de Brest, UMR-CNRS 6521/SFR148 ScInBioS, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France. and Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Unité INSERM 892 - CNRS 6299, 8 quai Moncousu, BP 70721 44007 Nantes Cedex, France
| | - Nathalie Camus
- Université de Brest, UMR-CNRS 6521/SFR148 ScInBioS, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | - Pierre-Yves Orain
- Université de Brest, UMR-CNRS 6521/SFR148 ScInBioS, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | - Marie Lacombe
- Institut de Cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | - Karine Bernardeau
- Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Unité INSERM 892 - CNRS 6299, 8 quai Moncousu, BP 70721 44007 Nantes Cedex, France
| | - Michel Chérel
- Institut de Cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | | | | | - Raphaël Tripier
- Université de Brest, UMR-CNRS 6521/SFR148 ScInBioS, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| |
Collapse
|
15
|
Schjoeth-Eskesen C, Nielsen CH, Heissel S, Højrup P, Hansen PR, Gillings N, Kjaer A. [(64) Cu]-labelled trastuzumab: optimisation of labelling by DOTA and NODAGA conjugation and initial evaluation in mice. J Labelled Comp Radiopharm 2015; 58:227-33. [PMID: 25906708 PMCID: PMC5029596 DOI: 10.1002/jlcr.3287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/28/2022]
Abstract
The human epidermal growth factor receptor‐2 (HER2) is overexpressed in 20–30% of all breast cancer cases, leading to increased cell proliferation, growth and migration. The monoclonal antibody, trastuzumab, binds to HER2 and is used for treatment of HER2‐positive breast cancer. Trastuzumab has previously been labelled with copper‐64 by conjugation of a 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) chelator. The aim of this study was to optimise the 64Cu‐labelling of DOTA‐trastuzumab and as the first to produce and compare with its 1,4,7‐triazacyclononane, 1‐glutaric acid‐5,7 acetic acid (NODAGA) analogue in a preliminary HER2 tumour mouse model. The chelators were conjugated to trastuzumab using the activated esters DOTA mono‐N‐hydroxysuccinimide (NHS) and NODAGA‐NHS. 64Cu‐labelling of DOTA‐trastuzumab was studied by varying the amount of DOTA‐trastuzumab used, reaction temperature and time. Full 64Cu incorporation could be achieved using a minimum of 10‐µg DOTA‐trastuzumab, but the fastest labelling was obtained after 15 min at room temperature using 25 µg of DOTA‐trastuzumab. In comparison, 80% incorporation was achieved for 64Cu‐labelling of NODAGA‐trastuzumab. Both [64Cu]DOTA‐trastuzumab and [64Cu]NODAGA‐trastuzumab were produced after purification with radiochemical purities of >97%. The tracers were injected into mice with HER2 expressing tumours. The mice were imaged by positron emission tomography and showed high tumour uptake of 3–9% ID/g for both tracers.
Collapse
Affiliation(s)
- Christina Schjoeth-Eskesen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Haagen Nielsen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Søren Heissel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nic Gillings
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|