1
|
Kahts M, Summers B, Gutta A, Pilloy W, Ebenhan T. Recently developed radiopharmaceuticals for bacterial infection imaging. EJNMMI Radiopharm Chem 2024; 9:49. [PMID: 38896373 PMCID: PMC11187059 DOI: 10.1186/s41181-024-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Infection remains a major cause of morbidity and mortality, regardless of advances in antimicrobial therapy and improved knowledge of microorganisms. With the major global threat posed by antimicrobial resistance, fast and accurate diagnosis of infections, and the reliable identification of intractable infection, are becoming more crucial for effective treatment and the application of antibiotic stewardship. Molecular imaging with the use of nuclear medicine allows early detection and localisation of infection and inflammatory processes, as well as accurate monitoring of treatment response. There has been a continuous search for more specific radiopharmaceuticals to be utilised for infection imaging. This review summarises the most prominent discoveries in specifically bacterial infection imaging agents over the last five years, since 2019. MAIN BODY Some promising new radiopharmaceuticals evaluated in patient studies are reported here, including radiolabelled bacterial siderophores like [68Ga]Ga-DFO-B, radiolabelled antimicrobial peptide/peptide fragments like [68Ga]Ga-NOTA-UBI29-41, and agents that target bacterial synthesis pathways (folic acid and peptidoglycan) like [11C]para-aminobenzoic acid and D-methyl-[11C]-methionine, with clinical trials underway for [18F]fluorodeoxy-sorbitol, as well as for 11C- and 18F-labelled trimethoprim. CONCLUSION It is evident that a great deal of effort has gone into the development of new radiopharmaceuticals for infection imaging over the last few years, with remarkable progress in preclinical investigations. However, translation to clinical trials, and eventually clinical Nuclear Medicine practice, is apparently slow. It is the authors' opinion that a more structured and harmonised preclinical setting and well-designed clinical investigations are the key to reliably evaluate the true potential of the newly proposed infection imaging agents.
Collapse
Affiliation(s)
- Maryke Kahts
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa.
| | - Beverley Summers
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Aadil Gutta
- Nuclear Medicine Department, Dr George Mukhari Academic Hospital, Ga-Rankuwa, 0208, South Africa
- School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Wilfrid Pilloy
- Nuclear Medicine Department, Dr George Mukhari Academic Hospital, Ga-Rankuwa, 0208, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Department and Nuclear Medicine Research Infrastructure, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
2
|
Kleynhans J, Sathekge MM, Ebenhan T. Preclinical Research Highlighting Contemporary Targeting Mechanisms of Radiolabelled Compounds for PET Based Infection Imaging. Semin Nucl Med 2023; 53:630-643. [PMID: 37012169 DOI: 10.1053/j.semnuclmed.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
It is important to constantly monitor developments in the preclinical imaging arena of infection. Firstly, novel radiopharmaceuticals with the correct characteristics must be identified to funnel into the clinic. Secondly, it must be evaluated if enough innovative research is being done and adequate resources are geared towards the development of radiopharmaceuticals that could feed into the Nuclear Medicine Clinic in the near future. It is proposed that the ideal infection imaging agent will involve PET combined with CT but more ideally MRI. The radiopharmaceuticals currently presented in preclinical literature have a wide selection of vectors and targets. Ionic formulations of PET-radionuclides such 64CuCl2 and 68GaCl2 are evaluated for bacterial infection imaging. Many small molecule based radiopharmaceuticals are being investigated with the most prominent targets being cell wall synthesis, maltodextrin transport (such as [18F]F-maltotriose), siderophores (bacterial and fungal infections), the folate synthesis pathway (such as [18F]F-PABA) and protein synthesis (radiolabelled puromycin). Mycobacterial specific antibiotics, antifungals and antiviral agents are also under investigation as infection imaging agents. Peptide based radiopharmaceuticals are developed for bacterial, fungal and viral infections. The radiopharmaceutical development could even react quickly enough on a pandemic to develop a SARS-CoV-2 imaging agent in a timely fashion ([64Cu]Cu-NOTA-EK1). New immuno-PET agents for the imaging of viruses have recently been published, specifically for HIV persistence but also for SARS-CoV2. A very promising antifungal immuno-PET agent (hJ5F) is also considered. Future technologies could include the application of aptamers and bacteriophages and even going as far as the design of theranostic infection. Another possibility would be the application of nanobodies for immuno-PET applications. Standardization and optimization of the preclinical evaluation of radiopharmaceuticals could enhance clinical translation and reduce time spent in pursuing less than optimal candidates.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Durkan K, Ichedef C, Yurt Kilcar A, Koksal Karayildirim C. In vivo behavior of technetium-99m labeled ibuprofen in infection and inflamation animal models. Drug Dev Ind Pharm 2023; 49:479-484. [PMID: 37458266 DOI: 10.1080/03639045.2023.2235009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE The objective of this study was to develop radiolabeled ibuprofen (99mTc-ibu) for imaging and discrimination of inflammation and infection and compare its biodistribution in two different animal models. SIGNIFICANCE The development of radiolabeled ibuprofen as an imaging agent for inflammation and infection may have significant clinical implications for the diagnosis and management of various inflammatory and infectious diseases. This study provides a promising approach to the detection of sterile infections. METHODS Ibuprofen was radiolabeled with 99mTc using the stannous chloride method with a yield of 99.05 ± 0.83% (n = 5). The in vivo biological behavior of radiolabeled ibuprofen was determined in Wistar albino rat models of sterile inflammation and bacterial infection with Staphylococcus aureus gram-positive bacteria. Biodistribution studies were carried out at different time points, and the results were compared between the two animal models. RESULTS The uptake of 99mTc-ibu in sterile inflammation sites at all time points was higher than that in the infection sites. This suggests that 99mTc-ibu can be used to discriminate between sterile inflammation and bacterial infection. CONCLUSIONS The results of this study suggest that the detection of sterile infections with 99mTc-ibu is possible and highly encouraging.
Collapse
Affiliation(s)
- Kubra Durkan
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Bornova, Turkey
| | - Cigdem Ichedef
- Department of Biology, Faculty of Science, Ege University, Izmir, Bornova, Turkey
| | - Ayfer Yurt Kilcar
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Bornova, Turkey
| | | |
Collapse
|
4
|
Zhang X, Basuli F, Shi ZD, Shah S, Shi J, Mitchell A, Lai J, Wang Z, Hammoud DA, Swenson RE. Synthesis and Evaluation of Fluorine-18-Labeled L-Rhamnose Derivatives. Molecules 2023; 28:molecules28093773. [PMID: 37175182 PMCID: PMC10180268 DOI: 10.3390/molecules28093773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.
Collapse
Affiliation(s)
- Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Amelia Mitchell
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
5
|
Abstract
Bacterial infections are a major threat to human health. Rapid and accurate diagnosis of bacterial infections is essential for early interventions and rational use of antibiotic treatments. However, antibiotics are often initiated empirically while diagnostic tests are being performed. Moreover, traditional diagnostic tools, namely microscopy, microbiology and molecular techniques, are dependent upon sampling suspected sites of infection, and then performing tests. This approach is often invasive, labor intensive, time consuming, and subject to the uncertainties of incorrect sampling and contamination. There are currently no imaging approaches for the specific detection of bacterial infections. Therefore, there is a need for new noninvasive approaches to detect, localize and monitor bacterial infections with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
6
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:11552. [PMID: 34768982 PMCID: PMC8584017 DOI: 10.3390/ijms222111552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Andrew P. Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA;
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Robert W. Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Dane K. Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| |
Collapse
|
9
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:ijms222111552. [PMID: 34768982 DOI: 10.3390/ijms222111552.pmid:34768982;pmcid:pmc8584017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Andrew P Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Robert W Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Dane K Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| |
Collapse
|