1
|
Yang Y, Li Y, Wang Y, Hu J, Zhang M, Sun Y, Gu W, Zhang Y, Sun J, Jacques KJ, Xu S. The ultrastructure of spermatogenic cells and morphological evaluation of testicular development in the silver pomfret (Pampus argenteus). Anat Histol Embryol 2021; 50:1034-1042. [PMID: 34655102 DOI: 10.1111/ahe.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
The silver pomfret (Pampus argenteus) is a widely distributed and economically important marine fish in the Indo-Pacific. In this study, we acquired the second generation of wild P. argenteus by artificial breeding and further studied the testicular development and ultrastructure of spermatogenesis. The results of gonadosomatic index (GSI) showed the spawning period of this marine fish was from April to June. Besides, through morphological analysis, we found that P. argenteus had an anastomosing tubular testis surrounded by a layer of tunica albuginea, in which spermatogenesis occurred in cysts where the synchronous germ cells were completely surrounded by the cytoplasmic projection of Sertoli cells. Meanwhile, based on submicroscopic characteristics, the germ cells are classified into nine different types. During the ontogenesis of testis, both the early stage of spermatogenesis and sperm were observed in P. argenteus. At sperm maturation stage, different types of spermatozoa and activation of sperms occurred non-synchronously in the tubules. Cytoplasmic bridges also were observed among synchronous germ cells within the cysts, suggesting an interrelated and differentiated relationship among these germ cells.
Collapse
Affiliation(s)
- Yang Yang
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yaya Li
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yajun Wang
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Jiabao Hu
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Man Zhang
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Yibo Sun
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Weiwei Gu
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Youyi Zhang
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Jiachu Sun
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Kimran Jean Jacques
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
| |
Collapse
|
2
|
Dadras H, Golpour A, Dzyuba B, Kristan J, Policar T. Ultrastructural feature of spermatogenic cells and spermatozoon in cultured burbot Lota lota. Tissue Cell 2019; 61:1-7. [PMID: 31759401 DOI: 10.1016/j.tice.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
Testis development and ultrastructure of spermatogenic cells and spermatozoa of burbot Lota lota, a commercially important cold freshwater fish, were studied by light and transmission electron microscopy. Spermatogonia, spermatocytes, spermatids, and spermatozoa are distributed along the seminiferous tubules. Electron-dense bodies appear in germ cells from primary spermatogonia to secondary spermatocytes. We identified three distinct stages of spermatid cell differentiation based on chromatin condensation, development of the flagellum, formation of a nuclear fossa, and elimination of excess cytoplasm. Spermatozoa were anacrosomal and characterized by location of the centrioles outside the nuclear fossa and incomplete perpendicular arrangement of the centrioles. The sperm flagellum displayed an axoneme with nine doublets of peripheral microtubules and two central microtubules. These results provide valuable information for burbot taxonomy and may clarify the process of spermatogenesis for this species.
Collapse
Affiliation(s)
- Hadiseh Dadras
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Zatisi 728, 389 25 Vodnany, Czech Republic.
| | - Amin Golpour
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Wuhan 430072, China
| | - Borys Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Zatisi 728, 389 25 Vodnany, Czech Republic
| | - Jiri Kristan
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Zatisi 728, 389 25 Vodnany, Czech Republic
| | - Tomas Policar
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Zatisi 728, 389 25 Vodnany, Czech Republic
| |
Collapse
|
3
|
de Siqueira-Silva DH, da Silva Rodrigues M, Nóbrega RH. Testis structure, spermatogonial niche and Sertoli cell efficiency in Neotropical fish. Gen Comp Endocrinol 2019; 273:218-226. [PMID: 30195025 DOI: 10.1016/j.ygcen.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
Abstract
Neotropical icthyofauna represents one of the most diverse and extreme ecosystems in the world. Likewise, reproduction showed enormous diversity with different reproductive systems, modes and behavior. On the other hand, information on Neotropical fish species, in particular on male reproductive physiology is restricted to few species. This mini-review aimed to compile the existing information on spermatogenesis of Neotropical teleosts focusing on testis structure, spermatogonial niche and Sertoli cell efficiency. The first topic covers the histological analysis of the testicular structure, showing a conserved testicular pattern in relation to the phylogenetic position: basal species present anastomosing tubular testis (e.g. Astyanax altiparanae, Conorhynchos conirostris, Pimelodus maculatus, Lophiosilurus alexandri, Rhinelepis aspera, among others), while derived teleosts showed lobular testis (e.g. Cichlasoma dimerus, Cichla kelberi, Odontesthes bonariensis, Synbranchus marmoratus and others). Next to testicular structure, existing data showed that type A undifferentiated spermatogonia (Aund) is differentially distributed among the Neotropical species. Aund can be restricted at the blind-end of the germinal compartment (O. bonariensis), or spread along the germinal epithelium (A. altiparanae), or even distributed along the germinal epithelium but concentrated at the blind-end (C. kelberi and C. intermedia). Moreover, recent studies in A. altiparanae have demonstrated that within the germinal compartment, Aund have a preferential distribution in areas neighboring the interstitial compartment - the spermatogonial niche. The proximity with the interstitium suggests that interstitial cells, such as Leydig cells, are important for Aund maintenance in the testis. Finally, this mini-review highlighted Sertoli cell efficiency, showing that a single Sertoli cell can support a higher number of germ cells (80-140 spermatids) in Neotropical species evaluated at the moment (e.g. A. altiparanae, Hoplias malabaricus, Poecilia reticulata, Serrasalmus spilopleura, C. intermedia). Overall, this review provided basic and functional information on spermatogenesis of Neotropical species. More studies in this field are necessary since Neotropical region is considered one of the hotspot regions to discovery new species providing, therefore, new opportunities to investigate spermatogenesis in fish.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- Group of Studies on the Reproduction of Amazon fish (GERPA/LANEC), PPG in Biodiversity and Biotechnology (BIONORTE), University of South and Southern of Pará (Unifesspa), Marabá, Pará, Brazil.
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP) - Botucatu Campus, Botucatu, Brazil; Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP) - Jaboticabal Campus, Jaboticabal, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP) - Botucatu Campus, Botucatu, Brazil.
| |
Collapse
|
4
|
Abstract
Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.
Collapse
Affiliation(s)
- Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Dhanasekar K, Selvakumar N, Munuswamy N. Ultrastructure of spermatozoa in cobia, Rachycentron canadum (Linnaeus, 1766). Anim Reprod Sci 2017; 189:43-50. [PMID: 29249515 DOI: 10.1016/j.anireprosci.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 10/18/2022]
Abstract
Ultrastructure and development of spermatozoa in cobia, Rachycentron canadum are described. Sections through the testis show different developmental stages viz, Spermatocytes, spermatids and sperm. Spermatozoa of R. canadum exhibit the configuration of uniflagellated, anacrosomal Type I aquasperm, typical for externally fertilizing fish. Mature spermatozoon is seen with a prominent head and long cylindrical flagellum. Ultrastructure of sperm shows invaginated 'U' shaped nucleus and other organelles. The mitochondrial matrix is electron-dense with irregular arrangement of the cristae. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The centriolar complex lies inside the nuclear fossa and is composed of a proximal and a distal centriole. The two centrioles are placed perpendicular to each other. The flagellum has a typical eukaryotic organization (microtubule doublets 9 + 2 pattern) and measures around 36.21 ± 0.42 μm in length. This study for the first time provides a comprehensive detail on the ultrastructure and developmental process of sperm in cobia, R. canadum.
Collapse
Affiliation(s)
- Krishnamoorthy Dhanasekar
- Unit of Aquaculture and Cryobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India.
| | - Narasimman Selvakumar
- Unit of Aquaculture and Cryobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India.
| | - Natesan Munuswamy
- Unit of Aquaculture and Cryobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, Tamil Nadu, India.
| |
Collapse
|
6
|
Cacialli P, D'Angelo L, de Girolamo P, Avallone L, Lucini C, Pellegrini E, Castaldo L. Morpho-Functional Features of the Gonads of Danio rerio: the Role of Brain-Derived Neurotrophic Factor. Anat Rec (Hoboken) 2017; 301:140-147. [PMID: 29024578 DOI: 10.1002/ar.23702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Zebrafish, a suitable and widely used teleost fish model in basic biomedical research, displays morphophysiological features of adult gonads that share some commonalities with those of mammalian species. In mammals, gametogenesis is regulated, among several factors, by brain-derived neurotrophic factor (BDNF). This neurotrophin has a well-established role in the developing and adult nervous system, as well as gonads development and functions in vertebrate species. We hypothesize that BDNF has a role also in the gonadal functions of zebrafish. At this purpose, we investigated BDNF and its receptors p75 and TrkB in the ovary and testis of adult zebrafish, kept under laboratory conditions. Our results display (1) the expression of BDNF mRNA and pro-BDNF protein outside of the nervous system, specifically in the ovary and testis; (2) the presence of pro-BDNF in primary oocytes and follicular layer, and p75 in follicular cells; (3) the localization of pro-BDNF in type B spermatogonia, and Sertoli cells in testis. Altogether, these data lead us to consider that BDNF is involved in the gonadal function of adult zebrafish, and mainly in the adult ovary. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:140-147, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy.,UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Elisabeth Pellegrini
- UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| |
Collapse
|
7
|
Spadella MA, Desan SP, Henriques TCBPO, Oliveira C. Variation in male reproductive system characters in Corydoradinae (Loricarioidei: Callichthyidae) reflects the occurrence of different lineages in this subfamily. NEOTROPICAL ICHTHYOLOGY 2017. [DOI: 10.1590/1982-0224-20160039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Callichthyidae comprises a well-corroborated monophyletic group divided into two subfamilies: Corydoradinae and Callichthyinae. A recent proposal, based on molecular data, suggests that Corydoradinae is composed by nine monophyletic lineages, possibly genera. The species pertaining to those lineages have extensive modification in the size of genome, including diploid, tetraploid and octoploid species. Considering the occurrence of these monophyletic lineages and that the variations in DNA content may imply in significant alterations on the structure of spermatozoa, this study analyzed the morphology of the male reproductive system and the morphometry of the head of the spermatozoa of representatives of the nine lineages of Corydoradinae, seeking for particular characteristics of each lineage. Morphological data revealed a high intra-lineage variation, larger than that observed among species of different lineages. In contrast, morphometric data obtained for eight out of the nine lineages, revealed large congruency with the hypothesis that Corydoradinae is composed by different lineages. These results demonstrate that there is a correlation among variations in DNA content and the size of the spermatozoon head, thus providing additional subsides for the definition of the Corydoradinae lineages.
Collapse
|
8
|
De Melo Dias GC, Cassel M, Oliveira De Jesus LW, Batlouni SR, Borella MI. Spermatogonia, Germline Cells, and Testicular Organization in the Characiform Prochilodus lineatus Studied Using Histological, Stereological, and Morphometric Approaches. Anat Rec (Hoboken) 2016; 300:589-599. [PMID: 27770506 DOI: 10.1002/ar.23505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 11/09/2022]
Abstract
Prochilodus lineatus is an important representative of the order Characiformes and a species that offers great advantages to fish farming. Therefore, detailed knowledge of its reproductive biology can be applied to various fields of production and biotechnology. In this study, we have identified testicular germ cells during spermatogenesis and have evaluated the volumetric proportion of the testes occupied by structures of the tubular and intertubular compartments. In addition, the individual volume of type A spermatogonia was measured and used to estimate the mean number of these cells per testis. Gonads of adult P. lineatus males were extracted and fixed. Light and transmission electron microscopy were applied to fragments of three testicular regions. Histological, stereological, and morphometric analyses were performed. The stereological data suggest that components of the tubular and intertubular compartments of the P. lineatus testes present a uniform distribution in all three regions and therefore reflect regions with similar distributions of cell types. In addition, P. lineatus testes showed ∼0.6% of type A spermatogonia, as well as a predominance of cysts of primary spermatocytes and spermatids during the reproductive phase evaluated. The results from this study provide a better understanding of the morphology and structure of the testis and of the characterization of the type A spermatogonia in P. lineatus. The nuclear diameter of germ cells also decreases significantly during spermatogenesis. The data presented herein are the first of its kind for the order Characiformes and may be useful for future biotechnology studies on fish reproduction. Anat Rec, 300:589-599, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gisele Cristiane De Melo Dias
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mônica Cassel
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lázaro Wender Oliveira De Jesus
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergio Ricardo Batlouni
- Reproduction Laboratory, Center of Aquaculture of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Maria Inés Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Liu H, Todd EV, Lokman PM, Lamm MS, Godwin JR, Gemmell NJ. Sexual plasticity: A fishy tale. Mol Reprod Dev 2016; 84:171-194. [PMID: 27543780 DOI: 10.1002/mrd.22691] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
Teleost fish exhibit remarkably diverse and plastic patterns of sexual development. One of the most fascinating modes of plasticity is functional sex change, which is widespread in marine fish including species of commercial importance; however, the regulatory mechanisms remain elusive. In this review, we explore such sexual plasticity in fish, using the bluehead wrasse (Thalassoma bifasciatum) as the primary model. Synthesizing current knowledge, we propose that cortisol and key neurochemicals modulate gonadotropin releasing hormone and luteinizing hormone signaling to promote socially controlled sex change in protogynous fish. Future large-scale genomic analyses and systematic comparisons among species, combined with manipulation studies, will likely uncover the common and unique pathways governing this astonishing transformation. Revealing the molecular and neuroendocrine mechanisms underlying sex change in fish will greatly enhance our understanding of vertebrate sex determination and differentiation as well as phenotypic plasticity in response to environmental influences. Mol. Reprod. Dev. 84: 171-194, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
A histological study of testis development and ultrastructural features of spermatogenesis in cultured Acrossocheilus fasciatus. Tissue Cell 2016; 48:49-62. [DOI: 10.1016/j.tice.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022]
|
11
|
Martínez VH, Monasterio de Gonzo G, Uribe MC, Grier HJ. Testicular structure in three viviparous species of teleosts in the genus Jenynsia (Anablepidae). SPERMATOGENESIS 2015; 4:e983399. [PMID: 26413404 DOI: 10.4161/21565562.2014.983399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/19/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022]
Abstract
Histological structure of the testes and development of spermatozoa in Jenynsia species is described using light, scanning and transmission electron microscopy. The testis type is restricted spermatogonial, wherein spermatogonia are restricted to the distal ends of lobules, typical of the Atherinomorpha, and spermatogenesis is continuous throughout the year in wild-caught fish. Within the testicular lobes there are lobular germinal compartments wherein the functional units are spermatocysts, whose borders are formed by Sertoli cells. Spermatocysts may contain meiotic primary spermatocytes, secondary spermatocytes, spermatids, undergoing spermiogenesis, or spermatozoa. Spermatocysts with later stages of developing sperm are located proximal to the testicular ducts. During spermiogenesis, spermatid nuclei become elongated. As this occurs, the nucleus develops a deep, central fossa that contains the centriolar complex. As the flagellum grows, enlarging spermatid mitochondria migrate posteriorly alongside the flagellum but remain separated from it by the cytoplasmatic canal, an indentation of the plasma membrane. Between the enlarged mitochondria and plasma membrane, a sub-mitochondrial net develops. In longitudinal sections, the enlarged mitochondria are stacked in a zig-zag fashion, and in transverse sections they appear as a ring surrounding the flagellum, but separated from it by the cytoplasmic canal. Spermatozoa of the 3 jenynsiid species have an introsperm complex composed of a long mid-piece whose flagellum has a single "wing." Within the efferent ducts and the tubular gonopodium, sperm are lightly packed in a side by side fashion which facilitates their transfer into the female reproductive tract. This study presents detailed descriptions of testicular organization and cytological characterization of the stages of spermatozoa differentiation in 3 species of Jenynsia from northwestern Argentina (J. alternimaculata, J. multidentata and J. maculata), in order to contribute to the understanding of testicular structure and development of spermatozoa in the context of evolution of viviparity in this fish lineage.
Collapse
Affiliation(s)
- V H Martínez
- Instituto de Bio y Geociencias; Facultad de Ciencias Naturales; Universidad Nacional de Salta; Salta, Argentina
| | - G Monasterio de Gonzo
- Instituto de Bio y Geociencias; Facultad de Ciencias Naturales; Universidad Nacional de Salta; Salta, Argentina
| | - M C Uribe
- Laboratorio de Biología de la Reproducción Animal; Facultad de Ciencias; Universidad Nacional Autónoma de México; Ciudad Universitaria ; México, México
| | - H J Grier
- Florida Fish and Wildlife Research Institute; St. Petersburg , FL USA
| |
Collapse
|
12
|
Santana JCDO, Quagio-Grassiotto I. Extracellular matrix remodeling of the testes through the male reproductive cycle in Teleostei fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1863-75. [PMID: 25142725 DOI: 10.1007/s10695-014-9974-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/10/2014] [Indexed: 05/21/2023]
Abstract
During the fish reproductive cycle, testes undergo morphological changes related to germinal epithelium and remodeling of extracellular matrix components (ECM). ECM is degraded mainly by action of matrix metalloproteinases (MMPs). Due to the natural renewal of ECM in fish testes, we choose Pimelodus maculatus to study remodeling of ECM throughout reproductive cycle, using picrosirius (to identify type I, II, III collagen) and reticulin (type III collagen), and to immunolocalize MT1-MMP (membrane type 1-matrix metalloproteinase) and MMP-2 in testis cells. Testes were classified in four reproductive phases: regenerating, development, spawning capable and regressing. Picrosirius and reticulin demonstrated a differential distribution of total collagen fibers during the reproductive cycle. Immunohistochemistry showed MT1-MMP only in acidophilic granulocyte cells mainly inside blood vessels, in connective tissue of capsule close to the germinal compartment, and also infiltrated in interstitial connective tissue. MMP-2 was detected in fibroblast and endothelial cells of interstitial and capsule blood vessels, in epithelial cells of capsule, and in acidophilic granulocyte cells at same description for MT1-MMP. The fish testes ECM were remodeled throughout reproductive cycle in according to morphophysiological alterations. During reproductive season (spawning capable), the interstitium increased in total collagen fibers (type I, II, III). After spermiation period (regression and regenerating), the amount of collagen fibers decreased in response to action of MMPs on collagen degradation and other interstitial components (not assessed in this study). MMPs seem to be indispensable components for natural cyclic events of ECM remodeling of fish testes and for guarantee tissue homeostasis throughout reproductive cycle.
Collapse
Affiliation(s)
- Julio Cesar de Oliveira Santana
- Departamento de Morfologia, Instituto de Biociências de Botucatu, UNESP, Campus de Botucatu, Botucatu, SP, 18618-970, Brazil
| | | |
Collapse
|
13
|
Lacerda SMDSN, Costa GMJ, de França LR. Biology and identity of fish spermatogonial stem cell. Gen Comp Endocrinol 2014; 207:56-65. [PMID: 24967950 DOI: 10.1016/j.ygcen.2014.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/29/2022]
Abstract
Although present at relatively low number in the testis, spermatogonial stem cells (SSCs) are crucial for the establishment and maintenance of spermatogenesis in eukaryotes and, until recently, those cells were investigated in fish using morphological criteria. The isolation and characterization of these cells in fish have been so far limited by the lack of specific molecular markers, hampering the high SSCs biotechnological potential for aquaculture. However, some highly conserved vertebrate molecular markers, such as Gfra1 and Pou5f1/Oct4, are now available representing important candidates for studies evaluating the regulation of SSCs in fish and even functional investigations using germ cells transplantation. A technique already used to demonstrate that, different from mammals, fish germ stem cells (spermatogonia and oogonia) present high sexual plasticity that is determined by the somatic microenvironment. As relatively well established in mammals, and demonstrated in zebrafish and dogfish, this somatic environment is very important for the preferential location and regulation of SSCs. Importantly, a long-term in vitro culture system for SSCs has been now established for some fish species. Therefore, besides the aforementioned possibilities, such culture system would allow the development of strategies to in vitro investigate key regulatory and functional aspects of germline stem cells (ex: self-renewal and/or differentiation) or to amplify SSCs of rare, endangered, or commercially valuable fish species, representing an important tool for transgenesis and the development of new biotechnologies in fish production.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
14
|
Maruska KP. Social regulation of reproduction in male cichlid fishes. Gen Comp Endocrinol 2014; 207:2-12. [PMID: 24859257 DOI: 10.1016/j.ygcen.2014.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022]
Abstract
Social interactions and relative positions within a dominance hierarchy have helped shape the evolution of reproduction in many animals. Since reproduction is crucial in all animals, and rank typically regulates access to reproductive opportunities, understanding the mechanisms that regulate socially-induced reproductive processes is extremely important. How does position in a dominance hierarchy impact an individual's reproductive behavior, morphology, and physiology? Teleost fishes, and cichlids in particular, are ideally-suited models for studying how social status influences reproduction on multiple levels of biological organization. Here I review the current knowledge on the reproductive behavioral and physiological consequences of relative position in a dominance hierarchy, with a particular focus on male cichlids. Dominant and subordinate social status is typically associated with distinct differences in activity along the entire hypothalamic-pituitary-gonadal axis. Further, when transitions in social status occur between subordinate and dominant individuals, there are plastic changes from whole-organism behavior to molecular-level gene expression modifications that occur quickly. These rapid changes in behavior and physiology have allowed cichlids the flexibility to adapt to and thrive in their often dynamic physical and social environments. Studies in cichlid fishes have, and will continue, to advance our understanding of how the social environment can modulate molecular, cellular, and behavioral outcomes relevant to reproductive success. Future studies that take advantage of the extreme diversity in mating systems, reproductive tactics, and parental care strategies within the cichlid group will help generate hypotheses and careful experimental tests on the mechanisms governing the social control of reproduction in many vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
15
|
Zhang L, Yang P, Liu Y, Bian X, Ullah S, Zhang Q, Chen W, Le Y, Chen B, Lin J, Gao C, Hu J, Chen Q. Pre-spermiogenic initiation of flagellar growth and correlative ultrastructural observations on nuage, nuclear and mitochondrial developmental morphology in the zebrafish Danio rerio. Micron 2014; 66:1-8. [PMID: 25080270 DOI: 10.1016/j.micron.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
The microstructural and ultrastructural changes of germ cells during spermatogenesis of zebrafish (Danio rerio) were examined using light microscopy (LM) and transmission electron microscopy (TEM). Generally the process of spermatogenesis in zebrafish is similar to that of other teleosts, however, here we describe some peculiar features of zebrafish spermatogenic cells which have a limited report in this species. (1) The basic events of spermiogenesis are asynchronous, location of flagellum finished in initial stage, while chromatin condensation sharply occurred in intermediate stage and elimination of excess cytoplasm mainly taken place in final stages. (2) Surprisingly, the cilia or initial flagellae are created in spermatocytes, approach toward the nucleus of early stage spermatids, and then the centrioles depress into nuclear fossa and change their orientation to each other from right angle to obtuse angle about 125°. (3) During spermatogenesis, the chromatin compaction performs in a distinctive pattern, condensed heterogeneously from granular into chromatin clumps with central electron-lucent areas, round or long, which diminished to small nuclear vacuoles in spermatozoa. This finding demonstrates the origin of nuclear vacuoles in zebrafish spermatozoa for the first time. (4) Nuages are observed in both spermatogonia and spermatocytes. They are connected with the mitochondria and nuclear membrane, and are even located in the perinuclear spaces of spermatogonia nuclei. (5) Mitochondrial morphology and distribution shows diversity in different germ cells. The condensed mitochondria appear in pachytene spermatocytes, and mitochondria including membrane conglomerate exist in both spermatocytes and spermatids. This study was undertaken in order to disclose specific spermatogenic cells features in zebrafish that could be helpful for understanding the correlative function in this model species.
Collapse
Affiliation(s)
- Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Jinxing Lin
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Cheng Gao
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Jianhua Hu
- Shanghai Laboratory Animal Research Centre, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
16
|
Papah MB, Kisia SM, Ojoo RO, Makanya AN, Wood CM, Kavembe GD, Maina JN, Johannsson OE, Bergman HL, Laurent P, Chevalier C, Bianchini A, Bianchini LF, Onyango DW. Morphological evaluation of spermatogenesis in Lake Magadi tilapia (Alcolapia grahami): a fish living on the edge. Tissue Cell 2013; 45:371-82. [PMID: 23916093 DOI: 10.1016/j.tice.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/06/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
Abstract
Spermatogenesis in Lake Magadi tilapia (Alcolapia grahami), a cichlid fish endemic to the highly alkaline and saline Lake Magadi in Kenya, was evaluated using light and transmission electron microscopy. Spermatogenesis, typified by its three major phases (spermatocytogenesis, meiosis and spermiogenesis), was demonstrated by the presence of maturational spermatogenic cells namely spermatogonia, spermatocytes, spermatids and spermatozoa. Primary spermatogonia, the largest of all the germ cells, underwent a series of mitotic divisions producing primary spermatocytes, which then entered two consecutive meiotic divisions to produce secondary spermatocytes and spermatids. Spermatids, in turn, passed through three structurally distinct developmental stages typical of type-I spermiogenesis to yield typical primitive anacrosomal spermatozoa of the externally fertilizing type (aquasperm). The spermatozoon of this fish exhibited a spheroidal head with the nucleus containing highly electron-dense chromatin globules, a midpiece containing ten ovoid mitochondria arranged in two rows and a flagellum formed by the typical 9 + 2 microtubule axoneme. In addition, the midpiece, with no cytoplasmic sheath, appeared to end blindly distally in a lobe-like pattern around the flagellum; a feature that was unique and considered adaptive for the spermatozoon of this species to the harsh external environment. These observations show that the testis of A. grahami often undergoes active spermatogenesis despite the harsh environmental conditions to which it is exposed on a daily basis within the lake. Further, the spermiogenic features and spermatozoal ultrastructure appear to be characteristic of Cichlidae and, therefore, may be of phylogenetic significance.
Collapse
Affiliation(s)
- M B Papah
- Dept. of Veterinary Anatomy and Physiology, University of Nairobi, 30197-00100 Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cassel M, Neves da Silva DF, Ferreira A. Cytoarchitectonical dynamic of Sertoli cells in Melanorivulus punctatus (Cyprinodontiformes: Rivulidae). Micron 2013; 45:115-8. [DOI: 10.1016/j.micron.2012.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 01/08/2023]
|
18
|
Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka. PLoS One 2012; 7:e52479. [PMID: 23300682 PMCID: PMC3530452 DOI: 10.1371/journal.pone.0052479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/19/2012] [Indexed: 01/03/2023] Open
Abstract
Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.
Collapse
|
19
|
Vergílio CDS, Moreira RV, de Carvalho CE, de Melo EJT. Characterization of mature testis and sperm morphology ofGymnotus carapo(Gymnotidae,Teleostei) from the southeast of Brazil. ACTA ZOOL-STOCKHOLM 2012. [DOI: 10.1111/j.1463-6395.2012.00569.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cristiane dos S. Vergílio
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; RJ; 28013-602; Brazil
| | - Renata V. Moreira
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; RJ; 28013-602; Brazil
| | - Carlos E.V. de Carvalho
- Laboratório de Ciências Ambientais; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; RJ; 28013-602; Brazil
| | - Edésio J. T. de Melo
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; RJ; 28013-602; Brazil
| |
Collapse
|
20
|
Huszno J, Klag J. The reproductive cycle in the male gonads of Danio rerio (Teleostei, Cyprinidae). Stereological analysis. Micron 2012; 43:666-72. [DOI: 10.1016/j.micron.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
|
21
|
Pfennig F, Kurth T, Meißner S, Standke A, Hoppe M, Zieschang F, Reitmayer C, Göbel A, Kretzschmar G, Gutzeit HO. The social status of the male Nile tilapia (Oreochromis niloticus) influences testis structure and gene expression. Reproduction 2012; 143:71-84. [DOI: 10.1530/rep-11-0292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dominant and territorial behaviour are known social phenomena in cichlids and social stress influences reproduction and growth. The gonadotropic hormones trigger spermatogenesis and subordinate males have typically lower levels of gonadotropins than dominant males. In this study, we compared testis morphology and gene expression of dominant and subordinate Nile tilapia males (d- and s-males) in socially stable communities. The d-males had the highest gonadosomatic index but they were not the largest animals in the majority of studied cases. Long-term d-males showed large groups of Leydig cells and hyperplasia of the tunica albuginea due to numerous cytochrome-P450-11β-hydroxylase (Cyp11b) expressing myoid cells. Increased Cyp11b expression in d-males was reflected by elevated 11-ketotestosterone plasma values. However, immunofluorescence microscopy and expression analysis of selected genes revealed that most s-males conserved their capability for spermatogenesis and are, therefore, ready for reproduction when the social environment changes. Moreover, in s-males gene expression analysis by quantitative RT-PCR showed increased transcript levels for germ line-specific genes (vasa,sox2anddmc1) and Sertoli-specific genes (amh,amhrIIanddmrt1) whereas gene expression of key factors for steroid production (sf1andcyp11b) were reduced. The Nile tilapia is a promising model to study social cues and gonadotropic signals on testis development in vertebrates.
Collapse
|
22
|
Rupik W, Huszno J, Klag J. Cellular organisation of the mature testes and stages of spermiogenesis in Danio rerio (Cyprinidae; Teleostei)—Structural and ultrastructural studies. Micron 2011; 42:833-9. [DOI: 10.1016/j.micron.2011.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|
23
|
Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. Spermatogenesis in fish. Gen Comp Endocrinol 2010; 165:390-411. [PMID: 19348807 DOI: 10.1016/j.ygcen.2009.02.013] [Citation(s) in RCA: 687] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/20/2009] [Indexed: 02/06/2023]
Abstract
Spermatogenesis is a developmental process during which a small number of diploid spermatogonial stem cells produce a large number of highly differentiated spermatozoa carrying a haploid, recombined genome. We characterise morphologically the different germ cell stages with particular attention for the spermatogonial generations, including the stem cells and their specific capacity to colonise a recipient's testis after transplantation. We propose a nomenclature for fish germ cells to improve the comparability among different teleost fish but also to higher vertebrates. Survival and development of germ cells depends on their continuous and close contact to Sertoli cells, and we review their multiple roles in the cystic mode of spermatogenesis seen in fish. We then discuss gene expression patterns associated with testis maturation. The endocrine system of vertebrates has evolved as master control system over spermatogenesis. In fish, both pituitary gonadotropins LH and FSH stimulate gonadal sex steroid hormone production directly by activating Leydig cells. Information is reviewed on the effects of progestin, androgens, and estrogens on global testicular gene expression patterns (microarray analysis), and on the molecular mechanisms by which steroids regulate specific candidate genes (identified by subtractive hybridization approaches) during early stages of testis maturation. Moreover, progestin and androgen effects on spermiation and milt hydration are discussed. Sex steroids mainly act via receptors expressed by Sertoli cells. One type of response is that Sertoli cells change growth factor expression, which subsequently modulates germ cell proliferation/differentiation via mechanisms yet to be characterised. Finally, we review data on germ cell autonomous processes, mainly derived from loss-of-function mutant fish lines, before identifying a number of focus areas for future research activities.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Utrecht University, Science Faculty, Department Biology, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Duration of spermatogenesis in the bullfrog (Lithobates catesbeianus). Theriogenology 2009; 72:894-901. [DOI: 10.1016/j.theriogenology.2009.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022]
|
25
|
Sàbat M, Lo Nostro F, Casadevall M, Muñoz M. A light and electron microscopic study on the organization of the testis and the semicystic spermatogenesis of the genusScorpaena(Teleostei, Scorpaenidae). J Morphol 2009; 270:662-72. [DOI: 10.1002/jmor.10707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Alvarenga ÉRD, França LRD. Effects of Different Temperatures on Testis Structure and Function, with Emphasis on Somatic Cells, in Sexually Mature Nile Tilapias (Oreochromis niloticus)1. Biol Reprod 2009; 80:537-44. [DOI: 10.1095/biolreprod.108.072827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
Nóbrega RH, Batlouni SR, França LR. An overview of functional and stereological evaluation of spermatogenesis and germ cell transplantation in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:197-206. [PMID: 18716890 DOI: 10.1007/s10695-008-9252-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 07/22/2008] [Indexed: 05/26/2023]
Abstract
Although there are almost thirty-thousand species of fish living in a great variety of habitats and utilizing vast reproductive strategies, our knowledge of morphofunctional and quantitative aspects of testis structure and spermatogenesis is still incipient for this group of vertebrates. In this review, we discuss aspects that are important to better understanding of testis structure and function, and of the development of germ cells (GC) during spermatogenesis. To achieve this, we have recently completed a number of studies presenting morphometric and functional data related to the numbers of GC and Sertoli cells (SC) per each type of spermatogenic cyst, the number of spermatogonial generations, the SC efficiency, and the magnitude of GC loss that normally occurs during spermatogenesis. We also investigated SC proliferation and the relationship of this important event to early spermatogenic cysts. The available data strongly suggest that SC proliferation in sexually mature tilapia is the primary factor responsible for the increase in testis size and for determination of the magnitude of sperm production. The influence of temperature on the duration of spermatogenesis in tilapia was also evaluated and we have used this knowledge to deplete endogenous spermatogenesis in this teleost, in order to develop an experimental system for GC transplantation. This exciting technique results in new possibilities for investigation of spermatogenesis and spermatogonial stem cell biology, creating also an entirely new and promising scenario in biotechnology-transgenic animal production and the preservation of the genetic stocks of valuable animals or endangered species.
Collapse
Affiliation(s)
- R H Nóbrega
- Department of Morphology, Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
28
|
Schulz RW, Menting S, Bogerd J, França LR, Vilela DAR, Godinho HP. Sertoli cell proliferation in the adult testis--evidence from two fish species belonging to different orders. Biol Reprod 2005; 73:891-8. [PMID: 16000552 DOI: 10.1095/biolreprod.105.039891] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell survival and development critically depend on the cells' contact with Sertoli cells in the vertebrate testis. Fish and amphibians are different from mammals in that they show a cystic type of spermatogenesis in which a single germ cell clone is enclosed by and accompanied through the different stages of spermatogenesis by an accompanying group of Sertoli cells. We show that in maturing and adult testes from African catfish and Nile tilapia, Sertoli cell proliferation occurs primarily during spermatogonial proliferation, allowing the cyst-forming Sertoli cells to provide the increasing space required by the growing germ cell clone. In this regard, coincident with a dramatic increase in cyst volume and number of germ cells per cyst, in Nile tilapia, the number of Sertoli cells per cyst was strikingly increased from primary spermatogonia to spermatocyte cysts. In both African catfish and Nile tilapia, Sertoli cell proliferation is strongly reduced when germ cells have proceeded into meiosis, and stops in postmeiotic cysts. We conclude that Sertoli cell proliferation is the primary factor responsible for the increase in testis size and sperm production observed in teleost fish. In mammals, Sertoli cell proliferation in the adult testis is not observed under natural conditions. However, on the level of the individual spermatogenic cyst--similar to mammals--Sertoli cell proliferation ceases when germ cells have entered meiosis and when tight junctions are established between Sertoli cells. This suggests that fish are valid vertebrate models for studying Sertoli cell physiology.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Department of Endocrinology, Faculty of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Chaves-Pozo E, Mulero V, Meseguer J, García Ayala A. An overview of cell renewal in the testis throughout the reproductive cycle of a seasonal breeding teleost, the gilthead seabream (Sparus aurata L). Biol Reprod 2004; 72:593-601. [PMID: 15548730 DOI: 10.1095/biolreprod.104.036103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.
Collapse
Affiliation(s)
- Elena Chaves-Pozo
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
30
|
Smita M, Oommen OV, George JM, Akbarsha MA. Sertoli cells in the testis of caecilians,Ichthyophis tricolor andUraeotyphlus cf. narayani (Amphibia: Gymnophiona): Light and electron microscopic perspective. J Morphol 2003; 258:317-26. [PMID: 14584033 DOI: 10.1002/jmor.10155] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The caecilians have evolved a unique pattern of cystic spermatogenesis in which cysts representing different stages in spermatogenesis coexist in a testis lobule. We examined unsettled issues relating to the organization of the caecilian testis lobules, including the occurrence of a fatty matrix, the possibility of both peripheral and central Sertoli cells, the origin of Sertoli cells from follicular cells, and the disengagement of older Sertoli cells to become loose central Sertoli cells. We subjected the testis of Ichthyophis tricolor (Ichthyophiidae) and Uraeotyphlus cf. narayani (Uraeotyphliidae) from the Western Ghats of Kerala, India, to light and transmission electron microscopic studies. Irrespective of the functional state of the testis, whether active or regressed, Sertoli cells constitute a permanent feature of the lobules. The tall Sertoli cells adherent to the basal lamina with basally located pleomorphic nuclei extend deeper into the lobule to meet at the core. There they provide for association of germ cells at different stages of differentiation, an aspect that has earlier been misconceived as the fatty matrix. Germ cells up to the 4-cell stage remain in the intercalating region of the Sertoli cells and they are located at the apices of the Sertoli cells from the 8-cell stage onwards. The developing germ cells are intimately associated with the Sertoli cell adherent to the basal lamina until spermiation. There are ameboid cells in the core of the lobules that appear to interact with the germ cells at the face opposite to their attachment with the Sertoli cells. Adherence of the Sertoli cells to the basal lamina is a permanent feature of the caecilian testicular lobules. The ameboid cells in the core are neither Sertoli cells nor their degeneration products.
Collapse
Affiliation(s)
- Mathew Smita
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | | | | | | |
Collapse
|
31
|
Lo Nostro F, Grier H, Andreone L, Guerrero GA. Involvement of the gonadal germinal epithelium during sex reversal and seasonal testicular cycling in the protogynous swamp eel, Synbranchus marmoratus Bloch 1795 (Teleostei, Synbranchidae). J Morphol 2003; 257:107-26. [PMID: 12740902 DOI: 10.1002/jmor.10105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells during the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the germinal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Sertoli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the presence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus marmoratus has a permanent germinal epithelium. Differences between the germinal compartment of the testes of primary and secondary males were not observed.
Collapse
Affiliation(s)
- F Lo Nostro
- Laboratorio de Embriología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina C1428EHA
| | | | | | | |
Collapse
|