1
|
Alibardi L. Ultrastructure and immunohistochemistry of apteric skin in ratites and its epidermal soft cornification. Acta Histochem 2024; 126:152213. [PMID: 39476480 DOI: 10.1016/j.acthis.2024.152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
An electron microscopy and immunohistochemistry study has been conducted to acquire comparative information on the structure of apteric skin in ratites, ostrich and emu. The epidermis is thin in the neck of both species and thicker in the dorsal region where acidic and neutral keratins are present in the viable epidermis and stratum corneum. The dermis in both species is mostly occupied by collagen fibrils that form large bundles, often organized in alternated layers in the deeper part of the dermis. Numerous collagen fibrils contact the basement membrane of the epidermis. Sparse tactile Meissner or Krause sensilli are present among the thick collagen bundles. The ostrich epidermis in the dorsal skin is thicker than in the neck, with a columnar basal layer, 3-5 intermediate suprabasal layers and a thick corneous layer. The epidermis of the neck in emu is very thin, featuring two-three narrow cell layers above a flat basal layer and a relatively thick corneous layer. Basal and suprabasal keratinocytes contain lipid droplets and small keratin bundles but no keratohyalin accumulates in pre-corneous cells. The thin corneocytes form a multilayered corneous layer. Loricrine is present in pre-corneous and corneous layers while CBPs, formerly indicated as beta-keratins, are absent in apteric epidermis.
Collapse
|
2
|
El-Nahass EES, Elwan MM. Comparative histological and ultrastructural features of the tongue of the mallard domestic duck, Anas platyrhynchos f. domestica, Anatidae (Linnaeus, 1758) in different two age stages (post-hatching [P2] and adult female) captured from Egypt. Microsc Res Tech 2024; 87:1183-1200. [PMID: 38289084 DOI: 10.1002/jemt.24504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/14/2024] [Indexed: 04/19/2024]
Abstract
The domestic duck is classified as a specialist filter-feeder bird living in the water. These birds also use grazing and pecking as terrestrial feeding methods. The tongues of domestic ducks, similar to those of other Anseriformes, exhibit numerous types and shapes of mechanical papillae that serve a number of purposes when collecting food. The current study attempts to describe the morphological characteristics of the tongue as well as the mechanical papillae's development. In addition, the study aims to determine whether the papillae observed post-hatching (P2) exhibit similar morphology to those found in adult female avian species, as well as to investigate the readiness of the tongue to fulfill its feeding function following hatching. The comprehensive examination of lingual mucosa is examined about the structural modifications necessary for this variety of feeding activities. In this study, the tongues of nine young (P2) and adult female were used. The tongue had three distinct parts: the apex, which had a lingual nail on its ventral surface; the body, which exhibits numerous small and large conical papillae on its lateral sides and a lingual prominence in the caudal region; and the root, which is covered with numerous conical papillae of varying sizes. Conical, filiform, and hair-like mechanical papillae, the three types of food filtration apparatus, are present in both stages. The intraoral transfer involves several structures, including the median groove, lingual combs, and the rostral border of the lingual prominence. The rostral border of the lingual prominence is characterized by distinct rows of conical papillae. The histological analysis demonstrated the presence of both keratinized and nonkeratinized epithelium on different tongue regions. The lingual salivary glands in the rostral and caudal lingual salivary glands exhibit a pronounced periodic acid-Schiff-positive reaction. Additionally, the yellow adipose tissue and sensory receptors, namely the Grandry and Herbst corpuscles, which collectively form the bill-tongue organ that monitors the movement of food. These results conclude the presence of microstructural species-specific alterations in specific tongue areas of domestic ducks' lingual mucosa. These modifications are formed by the filtering mechanism and terrestrial feeding mechanisms, such as grazing or pecking. Following hatching, the tongue of the domestic duck undergoes significant development, primarily in preparation for grazing activities. The anatomical and histological structure of the young (P2) tongue exhibited similarities to that of the adult female domestic duck while also displaying certain variations that could potentially be attributed to the bird's habitat and mode of feeding. RESEARCH HIGHLIGHTS: The results of this study concluded that the domestic duck exhibit a complex tongue structure characterized by the arrangement and morphology of its mechanical papillae, the presence of the lingual prominence with distinctive shape and the lingual comb. These features are believed to be adaptations that enable the duck to actively and efficiently filter food particles from water, serving as its primary feeding mechanism. Additionally, the tongue of domestic ducks is specifically adapted to facilitate various terrestrial activities, such as grazing and pecking. This adaptation is achieved through the presence of conical papillae and a lingual nail. These investigations facilitate our comprehension of both the anatomical and histological characteristics of the domestic duck tongue, as well as enhance our understanding of bird adaptations to various feeding mechanisms.
Collapse
Affiliation(s)
| | - Mona M Elwan
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Skieresz-Szewczyk K, Jackowiak H, Skrzypski M. Alpha-Keratin, Keratin-Associated Proteins and Transglutaminase 1 Are Present in the Ortho- and Parakeratinized Epithelium of the Avian Tongue. Cells 2022; 11:1899. [PMID: 35741029 PMCID: PMC9221158 DOI: 10.3390/cells11121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The lingual mucosa in birds is covered with two specific types of multilayered epithelia, i.e., the para- and orthokeratinized epithelium, that differ structurally and functionally. Comprehensive information on proteins synthesized in keratinocyte during their cytodifferentiation in subsequent layers of multilayered epithelia in birds concerns only the epidermis and are missing the epithelia of the lingual mucosa. The aim of the present study was to perform an immunohistochemical (IHC) and molecular analysis (WB) of bird-specific alpha-keratin, keratin-associated proteins (KAPs), namely filaggrin and loricrin, as well as transglutaminase 1 in the para- and orthokeratinized epithelium covering the tongue in the domestic duck, goose, and turkey. The results reveal the presence of alpha-keratin and KAPs in both epithelia, which is a sign of the cornification process. In contrast to the epidermis, the main KAPs involved in the cornification process of the lingual epithelia in birds is loricrin. Stronger expression with KAPs and transglutaminase 1 in the orthokeratinized epithelium than in the parakeratinized epithelium may determine the formation of a more efficient protective mechanical barrier. The presence of alpha-keratin, KAPs, and transglutaminase 1 epitopes characteristic of epidermal cornification in both types of the lingual epithelia may prove that they are of ectodermal origin.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Hanna Jackowiak
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland;
| |
Collapse
|
4
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
5
|
Lachner J, Ehrlich F, Wielscher M, Farlik M, Hermann M, Tschachler E, Eckhart L. Single-cell transcriptomics defines keratinocyte differentiation in avian scutate scales. Sci Rep 2022; 12:126. [PMID: 34997067 PMCID: PMC8742010 DOI: 10.1038/s41598-021-04082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.
Collapse
Affiliation(s)
- Julia Lachner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Skieresz-Szewczyk K, Buchwald T, Szybowicz M, Jackowiak H. Alpha-keratin and corneous beta protein in the parakeratinized epithelium of the tongue in the domestic goose (Anser anser f. domestica). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:158-166. [PMID: 31243896 DOI: 10.1002/jez.b.22892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
The parakeratinized epithelium is a common epithelium in the oral cavity in birds and is characterized by the presence of cell nuclei in the cells of the cornified layer. This epithelium covers almost the entire dorsal surface of the tongue in the domestic goose apart of the lingual nail and conical papillae. So far no study has identified the molecular proteins alpha-keratin (IF-keratin) and/or corneous beta protein (CBP), which are responsible for keratinization or cornification processes in the parakeratinized epithelium of domestic geese. The study was performed using immunohistochemical (IHC) methods to identify alpha-keratin. The innovative method of Raman microspectroscopy was used to determine the presence of CBP and specify their percentage in epithelial layers of the parakeratinized epithelium. The results revealed that alpha-keratin is present in the whole parakeratinized epithelium. A strong staining reaction was detected in the basal and intermediate layers and a less strong staining reaction in the cornified layer. Raman microspectroscopy analysis confirmed the presence of alpha-keratin and demonstrated that its percentage decreases from the basal layer to the cornified layer. The Raman microspectroscopy technique revealed the occurrence of CBP in the parakeratinized epithelium and demonstrated that the percentage of this protein increases from the basal layer to the cornified layer. Performed analysis determines that parakeratinized epithelium undergoes cornification. However, the lower percentage of CBP in the cornified layer of parakeratinized epithelium than in orthokeratinized epithelium points to the fact that parakeratinized epithelium has a weaker protective function.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego, Poznan, Poland
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Piotrowo, Poznan, Poland
| | - Mirosław Szybowicz
- Institute of Materials Research and Quantum Engineering, Faculty of Technical Physics, Poznan University of Technology, Piotrowo, Poznan, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego, Poznan, Poland
| |
Collapse
|
8
|
Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. Nat Commun 2018; 9:2072. [PMID: 29802246 PMCID: PMC5970262 DOI: 10.1038/s41467-018-04443-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic. In addition to the evolutionary innovation of feathers, bird skin has complex adaptations. Here, McNamara and colleagues examine exceptionally preserved skin from feathered dinosaurs and ancient birds from the Cretaceous and show the early acquisition of many skin attributes seen in modern species.
Collapse
|
9
|
Ultrastructural study on the embryonic development of the orthokeratinized epithelium and its cornified layer (lingual nail) on the ventral surface of the lingual apex in the domestic duck (Anas platyrhynchos f. domestica). ZOOLOGY 2018; 126:36-45. [DOI: 10.1016/j.zool.2017.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022]
|
10
|
Skieresz-Szewczyk K, Jackowiak H, Buchwald T, Szybowicz M. Localization of Alpha-Keratin and Beta-Keratin (Corneous Beta Protein) in the Epithelium on the Ventral Surface of the Lingual Apex and Its Lingual Nail in the Domestic Goose (Anser Anser f. domestica) by Using Immunohistochemistry and Raman Microspectros. Anat Rec (Hoboken) 2017; 300:1361-1368. [DOI: 10.1002/ar.23591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
| | - Hanna Jackowiak
- Department of Histology and Embryology; Poznan University of Life Sciences; Poznan Poland
| | - Tomasz Buchwald
- Faculty of Technical Physics; Institute of Materials Research and Quantum Engineering, Poznan University of Technology; Poznan Poland
| | - Mirosław Szybowicz
- Faculty of Technical Physics; Institute of Materials Research and Quantum Engineering, Poznan University of Technology; Poznan Poland
| |
Collapse
|
11
|
Skieresz-Szewczyk K, Jackowiak H. Development of mechanical papillae of the tongue in the domestic goose (Anser anser f. domestica) during the embryonic period. PROTOPLASMA 2017; 254:147-160. [PMID: 26689409 PMCID: PMC5216114 DOI: 10.1007/s00709-015-0927-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/07/2015] [Indexed: 05/20/2023]
Abstract
Three types of mechanical papillae, i.e., conical, filiform, and hair-like papillae, are present on the tongue in the domestic goose. Within conical papillae, we distinguish three categories: large and small conical papillae on the body and conical papillae on the lingual prominence. The arrangement of mechanical papillae on the tongue in Anseriformes is connected functionally with different feeding mechanisms such as grazing and filter-feeding. The present work aims to determine whether morphology of three types of mechanical papillae in goose at the time of hatching is the same as in an adult bird and if the tongue is prepared to fulfill feeding function. Our results revealed that the primordia of the large conical papillae start to develop during the differentiation stage. The primordia of the small conical papillae and conical papillae of the lingual papillae start to develop during the growth stage. At the end of the growth stage, only large conical papillae, three pairs of small conical papillae, and conical papillae of the lingual prominence have similar arrangement as in an adult bird. The shape and arrangement of the remaining small conical papillae probably will be changed after hatching. During embryonic period, the filiform papillae and hair-like papillae are not formed. The embryonic epithelium that covered the mechanical papillae undergoes transformation leading to the formation of multilayered epithelium. During prehatching stage, epithelium becomes orthokeratinized epithelium. In conclusion, the tongue of the domestic goose after hatching is well prepared only for grazing. The filtration of food from water is limited due to the lack of filiform papillae.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznań, Poland.
| | - Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625, Poznań, Poland
| |
Collapse
|
12
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Jackowiak H, Skieresz-Szewczyk K, Godynicki S, Iwasaki SI, Meyer W. Functional morphology of the tongue in the domestic goose (Anser anser f. domestica). Anat Rec (Hoboken) 2011; 294:1574-84. [PMID: 21830308 DOI: 10.1002/ar.21447] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 05/17/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Using LM and SEM methods, the study describes microstructures in particular areas of the tongue of the goose. A thick multilayered keratinized epithelium forms the "lingual nail" and covers small and giant conical papillae, whereby the first functions as an exoskeleton of the tongue apex, and the latter are arranged along the lingual and well-developed connective tissue cores, and together with the bill lamellae are involved in cutting. The row of conical papillae on the lingual prominence prevents regurgitation of transported food. In the area of the "lingual nail" and in the anterior part of the lingual prominence, Herbst corpuscles are accumulated, which allow to recognize food position. Filiform papillae, as widely distributed between the conical papillae of the body, are responsible for filtering. They can be explained as long keratinized processes of the epithelium and are devoid of connective tissue cores. During food transport, the flattened areas of the lingual body and the lingual prominence are protected by a parakeratinized epithelium, but the root is covered by a nonkeratinized epithelium. The presence of adipose tissue in the tongue probably reduces pressure during food passage, but also promotes mucus evacuation from the lingual glands, thus facilitating food transport. An entoglossal bone with a continuation as cartilage is the stable structural basis of the tongue system.
Collapse
Affiliation(s)
- Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Wojska Polskiego 71 C, Poznań, Poland.
| | | | | | | | | |
Collapse
|
14
|
Maderson PF, Hillenius WJ, Hiller U, Dove CC. Towards a comprehensive model of feather regeneration. J Morphol 2009; 270:1166-208. [DOI: 10.1002/jmor.10747] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Toni M, Alibardi L. Characterization of beta-keratins in lizard epidermis: electrophoresis, immunocytochemical and in situ-hybridization study. Tissue Cell 2006; 39:1-11. [PMID: 17101163 DOI: 10.1016/j.tice.2006.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lizard scales are composed of alpha-(cyto-) keratins and beta-keratins. The characterization of the molecular weight and isoelectric point (pI) of alpha- and beta-keratins of lizard epidermis (Podarcis sicula) has been done by using two-dimensional electrophoresis, immunoblotting, and immunocytochemistry. Antibodies against cytokeratins, against a chicken scale beta-keratin or against lizard beta-keratin bands of 15-16kDa, have been used to recognize alpha- and beta-keratins. Acid and basic cytokeratins of 42-67kDa show a pI from 5.0 to 8.9. This indicates the presence of specific keratins for the formation of the stratum corneum. Main protein spots of beta-keratin at 15-17kDa, and pI at 8.5, 8.2, and 6.7, and one spot at 10kDa and pI at 7.3 were recognized. Therefore, beta-keratins are mainly basic proteins, and are used for the formation of the hard corneous layer of the epidermis. Ultrastructural immunocytochemistry confirms that beta-keratin is packed into large and dense bundles of beta-keratin cells of lizard epidermis. The use of a probe against a lizard beta-keratin in situ-hybridization studies confirms that the mRNA for beta-keratins is present in beta-cells and is localized around or even associated with beta-keratin filaments.
Collapse
Affiliation(s)
- M Toni
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | | |
Collapse
|
16
|
Alibardi L. Ultrastructural and immunohistochemical observations on the process of horny growth in chelonian shells. Acta Histochem 2006; 108:149-62. [PMID: 16733064 DOI: 10.1016/j.acthis.2006.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 02/13/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
The process of growth of horny scutes of the carapace and plastron in chelonians is poorly understood. In order to address this problem, the shell of the terrestrial tortoise Testudo hermanni, the freshwater turtle Chrysemys picta, and the soft shelled turtle Trionix spiniferus were studied. The study was carried out using immunohistochemistry, electron microscopy and autoradiography following injection of tritiated histidine. The species used in the present study illustrate three different types of shell growth that occur in chelonians. In scutes of Testudo and Chrysemys, growth mainly occurs in the hinge regions by the production of cells that accumulate beta-keratin and incorporate tritiated histidine. Newly produced bundles of alpha- and beta-keratin incorporate most of the histidine. No keratohyalin is observed in the epidermis of any of the species studied here. In Testudo, newly generated corneocytes containing beta-keratin form a corneous layer to form the growing rings of scutes. In Chrysemys, newly generated corneocytes containing beta-keratin form the new, expanded corneous layer. In the latter species, at the end of the growing season (autumn/fall), thin corneocytes containing little beta-keratin are produced underneath the corneous layer, and gradually form a scission layer. In the following growing season (spring-summer) the shedding layer matures and determines the loss of the outer corneous layer. In this way, scutes expand their surface at any new molt. In Trionix, no distinct scutes and hinge regions are present and during the growing season, new corneocytes are mainly produced along the perimeter of the shell. Corneocytes of Trionix contain little beta-keratin and form a thick corneous layer in which cells resemble the alpha-layer of the softer epidermis of the limbs, tail and neck. Neither keratohyalin nor specific histidine incorporation was observed in these cells. Corneocytes are gradually lost from the epidermal surface. Dermal scutes are absent in Trionix, but the dermis is organized in 6-10 layers of plywood-patterned collagen bundles. The stratified layers gradually disappear toward the growing border of the shell. The mode of growth of horny scutes in these different species of chelonians is discussed.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Alibardi L, Toni M. Immunolocalization and characterization of beta-keratins in growing epidermis of chelonians. Tissue Cell 2006; 38:53-63. [PMID: 16426656 DOI: 10.1016/j.tice.2005.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/11/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
Beta-keratins constitute most of the corneous material of carapace and plastron of turtles. The production of beta-keratin in the epidermis of a turtle and tortoise (criptodirians) and of a species of pleurodiran turtle was studied after injection of tritiated proline during the growth of carapace, plastron and claws. Growth mainly occurs near hinge regions along the margins of scutes and along most of the claws (growing regions). Proline incorporation occurs mainly in the growing centers, and is more specifically associated with beta-keratin synthesis. Proline-labeled bands of protein at 12-14 kDa and 25-27 kDa, and 37 kDa, in the molecular weight range of beta-keratins, were isolated from the soft epidermis of turtles 3 h after injection of the labeled amino acid. After extraction of epidermal proteins, an antibody directed against a chicken beta-keratin was used for immunoblotting. Bands of beta-keratin at 15-17 kDa, 22-24 kDa, and 36-38 kDa appear in all species. Beta-keratin is present in the growing and compact stratum corneum of the hard (shell) and soft (limbs, neck and tail) epidermis. This was confirmed using a specific antibody against a turtle beta-keratin band of 15-16 kDa. The latter antibody recognized epidermal protein bands in the range of 15-16 kDa and 29-33 kDa, and labels beta-keratin filaments. This result indicates that different forms of beta-keratins are produced from low molecular weight precursors or that larger aggregate form during protein preparation. The present study shows that beta-keratin is abundant in the scaled epidermis of tortoise but also in the soft epidermis of pleurodiran and cryptodiran turtles, indicating that this form of hard keratin is constitutively expressed in the epidermis of chelonians.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Italy.
| | | |
Collapse
|
18
|
Alibardi L. Structural and Immunocytochemical Characterization of Keratinization in Vertebrate Epidermis and Epidermal Derivatives. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:177-259. [PMID: 17098057 DOI: 10.1016/s0074-7696(06)53005-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents comparative aspects of epidermal keratinization in vertebrates, with emphasis on the evolution of the stratum corneum in land vertebrates. The epidermis of fish does not contain proteins connected with interkeratin matrix and corneous cell envelope formation. Mucus-like material glues loose keratin filaments. In amphibians a cell corneous envelope forms but matrix proteins, aside from mucus/glycoproteins, are scarce or absent. In reptiles, birds, and mammals specific proteins associated with keratin become relevant for the production of a resistant corneous layer. In reptiles some matrix, histidine-rich and sulfur-rich corneous cell envelope proteins are produced in the soft epidermis. In avian soft epidermis low levels of matrix and cornified proteins are present while lipids become abundant. In mammalian keratinocytes, interkeratin proteins, cornified cell envelope proteins, and transglutaminase are present. Topographically localized areas of dermal-epidermal interactions in amniote skin determine the formation of skin derivatives such as scales, feathers, and hairs. New types of keratin and associated proteins are produced in these derivatives. In reptiles and birds beta-keratins form the hard corneous material of scales, claws, beaks, and feathers. In mammals, small sulfur-rich and glycine-tyrosine-rich proteins form the corneous material of hairs, horns, hooves, and claws. Molecular studies on reptilian beta-keratins show they are glycine-rich proteins. They have C- and N-terminal amino acid regions homologous to those of mammalian proteins and a central core with homology to avian scale/feather keratins. These findings suggest that ancient reptiles already possessed some common genes that later diversified to produce some keratin-associated protein in extant reptiles and birds, and others in mammals. The evolution of these small proteins represents the more recent variation of the process of cornification in vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Department of Experimental and Evolutionary Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Alibardi L, Dipietrangelo L. Differentiation of the epidermis of scutes in embryos and juveniles of the tortoise Testudo hermanni with emphasis on beta-keratinization. ACTA ZOOL-STOCKHOLM 2005. [DOI: 10.1111/j.1463-6395.2005.00203.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Alibardi L, Toni M. Localization and Characterization of Specific Cornification Proteins in Avian Epidermis. Cells Tissues Organs 2005; 178:204-15. [PMID: 15812148 DOI: 10.1159/000083732] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 11/19/2022] Open
Abstract
Little is known about proteins involved in the formation of the stratum corneum in the avian apteric epidermis. The present immunocytochemical, autoradiographic and electrophoretic study shows that antibodies against characteristic proteins of mammalian cornification (alpha-keratins, loricrin, sciellin, filaggrin, transglutaminase) recognize avian epidermal proteins. This suggests the presence of avian protein with epitopes common to related mammalian proteins. These proteins may also be involved in the formation of the cornified core and cell envelope of mature avian corneocytes. The immunoblotting study suggests that protein bands, cross-reactive for antibodies against loricrin (45, 52-57 kDa), sciellin (54, 84 kDa), filaggrin (32, 38, 45-48 kDa), and transglutaminase (40, 50, 58 kDa), are present in the avian epidermis. Immunocytochemistry shows that immunoreactivity for the above proteins is localized in the transitional and lowermost corneous layer of apteric epidermis. Their epitopes are rapidly masked/altered in cornifying cells and are no longer detectable in mature corneocytes. In scaled epidermis a thick layer made of beta-keratins of 14-18, 20-22, and 33 kDa is formed. Only in feathered epidermis (not in scale epidermis), an antifeather chicken beta-keratin antibody recognized a protein band at 8-12 kDa. This small beta-keratin is probably suitable for the formation of long, axial filaments in elongated barb, barbule and calamus cells. Conversely, the larger beta-keratins in scales are irregularly deposited forming flat plates. Tritiated histidine coupled to autoradiography show an absence of both keratohyalin and histidine-rich proteins in adult feathered and scaled epidermis. Most of the labeling appears in proteins within the range of beta- and alpha-keratins. These data on apteric epidermis support the hypothesis of an evolution of the apteric and interfollicular epidermis from the expansion of hinge regions of protoavian archosaurians.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
21
|
Alibardi L. Fine structure and immunocytochemistry of monotreme hairs, with emphasis on the inner root sheath and trichohyalin-based cornification during hair evolution. J Morphol 2005; 261:345-63. [PMID: 15281062 DOI: 10.1002/jmor.10254] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fine structure of hairs in the most ancient extant mammals, the monotremes, is not known. The present study analyzes the ultrastructure and immunocytochemistry for keratins, trichohyalin, and transglutaminase in monotreme hairs and compares their distribution with that present in hairs of the other mammals. The overall ultrastructure of the hair and the distribution of keratins is similar to that of marsupial and placental hairs. Acidic and basic keratins mostly localize in the outer root sheath. The inner root sheath (IRS) comprises 4-8 cell layers in most hairs and forms a tile-like sheath around the hair shaft. No cytological distinction between the Henle and Huxley layers is seen as cells become cornified about at the same time. Externally to the last cornified IRS cells (homologous to the Henle layer), the companion layer contains numerous bundles of keratin. Occasionally, some granules in the companion layer show immunoreactivity for the trichohyalin antibody. This further suggests that the IRS in monotremes is ill-defined, as the companion layer of placental hairs studied so far does not express trichohyalin. A cross-reactivity with an antibody against sheep trichohyalin is present in the IRS of monotremes, suggesting conserved epitopes across mammalian trichohyalin. Trichohyalin granules in the IRS consist of a framework of immunolabeled coarse filaments of 10-12 nm. The latter assume a parallel orientation and lose the immunoreactivity in fully cornified cells. Transglutaminase immunolabeling is diffuse among trichohyalin granules and among the parallel 10-12 nm filaments of maturing inner root cells. Transglutaminase is present where its substrate, trichohyalin, is modified as matrix protein. Cornification of IRS is different from that of hair fiber cuticle and from that of the cornified layer of the epidermis above the follicle. The different consistency among cuticle, IRS, and corneous layer of the epidermis determines separation between hair fiber, IRS, and epidermis. This allows the hair to exit on the epidermal surface after shedding from the IRS and epidermis. Based on comparative studies of reptilian and mammalian skin, a speculative hypothesis on the evolution of the IRS and hairs from the skin of synapsid reptiles is presented.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|