1
|
Kubiak A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Voronkina A, Rahimi P, Falahi S, Heimler K, Rogoll A, Vogt C, Ereskovsky A, Simon P, Langer E, Springer A, Förste M, Charitos A, Joseph Y, Jesionowski T, Ehrlich H. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro. Mar Drugs 2023; 21:460. [PMID: 37755073 PMCID: PMC10532518 DOI: 10.3390/md21090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Alona Voronkina
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street. 56, 21018 Vinnytsia, Ukraine
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany;
| | - Armin Springer
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany;
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
2
|
Manconi R, Cubeddu T, Pronzato R, Sanna MA, Nieddu G, Gaino E, Stocchino GA. Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. J Morphol 2022; 283:585-604. [PMID: 35119713 PMCID: PMC9306819 DOI: 10.1002/jmor.21460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
In some Porifera (Demospongiae: Keratosa), prototypes of the connective system are almost exclusively based on collagenic networks. We studied the topographic distribution, spatial layout, microtraits, and/or morphogenesis of these collagenic structures in Ircinia retidermata (Dictyoceratida: Irciniidae). Analyses were carried out on a clonal strain from sustainable experimental mariculture by using light and scanning electron microscopy. Histology revealed new insights on the widely diversified and complex hierarchical assemblage of collagenic structures. Key evolutionary novelties in the organization of sponge connective system were found out. The aquiferous canals are shaped as corrugate‐like pipelines conferring plasticity to the water circulation system. Compact clusters of elongated cells are putatively involved in a nutrient transferring system. Knob‐ended filaments are characterized by a banding pattern and micro‐components. Ectosome and outer endosome districts are the active fibrogenetic areas, where exogenous material constitutes an axial condensation nucleus for the ensuing morphogenesis. The new data can be useful to understand not only the evolutionary novelties occurring in the target taxon but also the morpho‐functional significance of its adaptive collagenic anatomical traits. In addition, data may give insights on both marine collagen sustainable applied researches along with evolutionary and phylogenetic analyses, thus highlighting sponges as a key renewable source for inspired biomaterials. Therefore, we also promote bioresources sustainable exploitation with the aim to provide new donors of marine collagen, thereby supporting conservation of wild populations/species.
Collapse
Affiliation(s)
- Renata Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Marina A Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Elda Gaino
- Viale Canepa 15/10, 16153 Sestri Ponente, Italy
| | | |
Collapse
|
3
|
Girard EB, Fuchs A, Kaliwoda M, Lasut M, Ploetz E, Schmahl WW, Wörheide G. Sponges as bioindicators for microparticulate pollutants? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115851. [PMID: 33126031 DOI: 10.1016/j.envpol.2020.115851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Amongst other threats, the world's oceans are faced with man-made pollution, including an increasing number of microparticulate pollutants. Sponges, aquatic filter-feeding animals, are able to incorporate fine foreign particles, and thus may be a potential bioindicator for microparticulate pollutants. To address this question, 15 coral reef demosponges sampled around Bangka Island (North Sulawesi, Indonesia) were analyzed for the nature of their foreign particle content using traditional histological methods, advanced light microscopy, and Raman spectroscopy. Sampled sponges accumulated and embedded the very fine sediment fraction (<200 μm), absent in the surrounding sand, in the ectosome (outer epithelia) and spongin fibers (skeletal elements), which was confirmed by two-photon microscopy. A total of 34 different particle types were identified, of which degraded man-made products, i.e., polystyrene, particulate cotton, titanium dioxide and blue-pigmented particles, were incorporated by eight specimens at concentrations between 91 and 612 particle/g dry sponge tissue. As sponges can weigh several hundreds of grams, we conservatively extrapolate that sponges can incorporate on average 10,000 microparticulate pollutants in their tissue. The uptake of particles, however, appears independent of the material, which suggests that the fluctuation in material ratios is due to the spatial variation of surrounding microparticles. Therefore, particle-bearing sponges have a strong potential to biomonitor microparticulate pollutants, such as microplastics and other degraded industrial products.
Collapse
Affiliation(s)
- Elsa B Girard
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Adrian Fuchs
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Melanie Kaliwoda
- SNSB - Mineralogische Staatssammlung München, 80333, München, Germany
| | - Markus Lasut
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jalan Kampus Unsrat Bahu, Manado, 95115, Sulawesi Utara, Indonesia
| | - Evelyn Ploetz
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 80333, Munich, Germany; SNSB - Mineralogische Staatssammlung München, 80333, München, Germany; GeoBio-Center(LMU), Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 80333, Munich, Germany; GeoBio-Center(LMU), Ludwig-Maximilians-Universität München, 80333, Munich, Germany; SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, 80333, Munich, Germany.
| |
Collapse
|
4
|
Pozzolini M, Ferrando S, Gallus L, Gambardella C, Ghignone S, Giovine M. Aquaporin in Chondrosia reniformis Nardo, 1847 and Its Possible Role in the Interaction Between Cells and Engulfed Siliceous Particles. THE BIOLOGICAL BULLETIN 2016; 230:220-232. [PMID: 27365417 DOI: 10.1086/bblv230n3p220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sponge Chondrosia reniformis selectively engulfs siliceous particles that, when in crystalline form, become quickly dissolved in its ectosome. The molecular mechanism, identity, and physiological significance of the cells involved in this process are not completely understood. In the present study, we applied light and electronic microscopic techniques to show how the quartz particles in C. reniformis are enveloped through collagen fibers and host cells near the surface of these organisms. As various aquaporins from bacteria, animals, and plants bidirectionally conduct metalloids-including silicon ions--through the cell membrane, the presence and potential involvement of aquaporins in quartz dissolution in C. reniformis have been investigated. An aquaporin-like transcript (CrAQP) was isolated according to the transcriptome sequencing results in C. reniformis The full-length CrAQP cDNA is 907 nucleotides long, with a 795-base pair (bp), open reading frame encoding a protein of 265 amino acids, a 29-bp, 5'-non-coding region, and a 83-bp, 3'-untranslated region. The Bayesian phylogenetic inference suggests that CrAqp is closely related to the Aqp8L grade, which is also implicated in H2O2 transport. Quantification of CrAQP mRNA through qPCR indicated that the transcript level was higher in the ectosome than in the choanosome. Immunofluorescence of a mammalian AQP8 in C. reniformis showed positivity in some cells near the quartz particles, a finding that may support the initial hypothesis of the potential involvement of CrAQP in quartz erosion. However, the features of the primary structure of this protein offer a new viewpoint about the functional role of these molecules in this process: that CrAQP may be involved in the permeation of H2O2 released during silica erosion.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy;
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Chiara Gambardella
- Institute of Marine Sciences (ISMAR) - CNR, Via De Marini 6, I-16149, Genoa, Italy; and
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP, Turin Unit) - CNR, V. le P. A. Mattioli 25, I-10125, Turin, Italy
| | - Marco Giovine
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
5
|
Abstract
The interaction between mineral structures and living beings is increasingly attracting the interest of research. The formation of skeletons, geomicrobiology, the study of the origin of life, soil biology, benthos biology, human and mammalian diseases generated by the inhalation of dust and biomaterials are some examples of scientific areas where the topic has a relevance. In this chapter we focus on cell reactivity to siliceous rocks and to the various forms of silicon dioxide, in particular. The examples here reported carefully review how such minerals may strongly affect different living beings, from simple ones to humans. The biomineralogy concept is explained, focusing on the effects of rocks on cell growth and development. The toxic action of silicon dioxide in mammalian lungs is the oldest evidence of crystalline silica bioactivity. More recently, we could demonstrate that crystalline silica has a deep impact on cell biology throughout the whole animal kingdom. One of the most illustrative case studies is the marine sponge Chondrosia reniformis, which has the amazing ability to incorporate and etch crystalline silica releasing dissolved silicates in the medium. This specific and selective action is due to the chemical reaction of ascorbic acid with quartz surfaces. One consequence of this is an increased production of collagen. The discovery of this mechanism opened the door to a new understanding of silica toxicity for animal cells and mammalian cells in particular. The presence of silica in sea water and substrates also affects processes like the settlement of larvae and the growth of diatoms. The following sections review all such aspects.
Collapse
|
6
|
Abstract
Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as well as experimental work on choanocyte morphology and function. Special attention is given to pinacocyte epithelia, cell junctions, and the molecules present in sponge epithelia. Studies describing the role of the pinacoderm in sensing, coordination, and secretion are reviewed. A wealth of recent work describes gene presence and expression patterns in sponge tissues during development, and we review this in the context of the previous descriptions of sponge morphology and physiology. A final section addresses recent findings of genes involved in the immune response. This review is far from exhaustive but intends rather to revisit for non-specialists key aspects of sponge morphology and physiology in light of new molecular data as a means to better understand and interpret sponge form and function today.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
7
|
Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG. Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 2008; 25:455-74. [DOI: 10.1039/b612515h] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Bavestrello G, Benatti U, Cattaneo-Vietti R, Cerrano C, Giovine M. Sponge cell reactivity to various forms of silica. Microsc Res Tech 2004; 62:327-35. [PMID: 14534906 DOI: 10.1002/jemt.10399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several sponge species incorporate a wide range of foreign material. Whether such material is actively selected by the sponge is controversial. Here we compare the available suspended matter and the sediment incorporated in the tissue of the demosponge Chondrosia reniformis. Field observations and laboratory experiments indicate that this species selects and incorporates only siliceous materials, in particular quartz particles and opal sponge spicules, avoiding carbonate particles. The reaction of ectosome cells of Chondrosia depends on the forms of silica: after settlement of crystalline quartz particles on the sponge surface, the pinacocytes contract uniformly, giving rise to a ruffled surface that remains throughout the incorporation of foreign material. In contrast, the opal spicules elicit a motile response in pinacocytes, which cover the spicules as a result. After incorporation, while the opal spicules remain unaltered within sponge tissue, the engulfed quartz particles are quickly etched, reduced in size, and released from the sponge. The etching of quartz particles by C. reniformis is produced by ascorbic acid, and is the first evidence of such activity from the animal kingdom. Ascorbic acid has been found to change the quartz surface features, which leads to an increased radical production and a consequent dissolution of quartz. This process does not occur on opal spicules.
Collapse
Affiliation(s)
- Giorgio Bavestrello
- Dipartimento di Scienze del Mare, Università Politecnica di Ancona, I-60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
9
|
Gaino E, Rebora M. Ability of mobile cells of the freshwater spongeEphydatia fluviatilis(Porifera, Demospongiae) to digest diatoms. ACTA ACUST UNITED AC 2003. [DOI: 10.1080/11250000309356491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Abstract
A new hypothesis for the evolution of Bilateria is presented. It is based on a reinterpretation of the morphological characters shared by protostomes and deuterostomes, which, when taken together with developmental processes shared by the two lineages, lead to the inescapable conclusion that the last common ancestor of Bilateria was complex. It possessed a head, a segmented trunk, and a tail. The segmented trunk was further divided into two sections. A dorsal brain innervated one or more sensory cells, which included photoreceptors. "Appendages" or outgrowths were present. The bilaterian ancestor also possessed serially repeated "segments" that were expressed ontogenetically as blocks of mesoderm or somites with adjoining fields of ectoderm or neuroectoderm. It displayed serially repeated gonads (gonocoels), each with a gonoduct and gonopore to the exterior, and serially repeated "coeloms" with connections to both the gut and the exterior (gill slits and pores). Podocytes, some of which were serially repeated in the trunk, formed sites of ultrafiltration. In addition, the bilaterian ancestor had unsegmented coeloms and a contractile blood vessel or "heart" formed by coelomic myoepithelial cells. These cells and their underlying basement membrane confine the hemocoelic fluid, or blood, in the connective tissue compartment. A possible scenario to account for this particular suite of characters is one in which a colony of organisms with a cnidarian grade of organization became individuated into a new entity with a bilaterian grade of organization. The transformation postulated encompassed three major transitions in the evolution of animals. These transitions included the origins of Metazoa, Eumetazoa, and Bilateria and involved the successive development of poriferan, cnidarian, and bilaterian grades of organization. Two models are presented for the sponge-to-cnidarian transition. In both models the loss of a flow-through pattern of water circulation in poriferans and the establishment of a single opening and epithelia sensu stricto in cnidarians are considered crucial events. In the model offered for the cnidarian-to-bilaterian transition, the last common ancestor of Eumetazoa is considered to have had a colonial, cnidarian-grade of organization. The ancestral cnidarian body plan would have been similar to that exhibited by pennatulacean anthozoans. It is postulated that a colonial organization could have provided a preadaptive framework for the evolution of the complex and modularized body plan of the triploblastic ancestor of Bilateria. Thus, one can explore the possibility that problematica such as ctenophores, the Ediacaran biota, archaeocyaths, and Yunnanozoon reflect the fact that complexity originated early and involved the evolution of a macroscopic compartmented ancestor. Bilaterian complexity can be understood in terms of Beklemishev "cycles" of duplication and colony individuation. Two such cycles appear to have transpired in the early evolution of Metazoa. The first gave rise to a multicellular organism with a sponge grade of organization and the second to the modularized ancestor of Bilateria. The latter episode may have been favored by the ecological conditions in the late Proterozoic. Whatever its cause, the individuation of a cnidarian-grade colony furnishes a possible explanation for the rapid diversification of bilaterians in the late Vendian and Cambrian. The creation of a complex yet versatile prototype, which could be rapidly modified by selection into a profusion of body plans, is postulated to have affected the timing, mode, and extent of the "Cambrian explosion." During the radiations, selective loss or simplification may have been as creative a force as innovation. Finally, colony individuation may have been a unique historical event that imprinted the development of bilaterians as the zootype and phylotypic stage. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- R A Dewel
- Department of Biology, Appalachian State University, Boone, NC 28606, USA.
| |
Collapse
|
11
|
Bavestrello G, Arillo A, Calcinai B, Cerrano C, Lanza S, Sara' M, Cattaneo‐Vietti R, Gaino E. Siliceous particles incorporation inChondrosia reniformis(Porifera, demospongiae). ACTA ACUST UNITED AC 1998. [DOI: 10.1080/11250009809386771] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Bavestrello G, Cerrano C, Cattaneo‐Vietti R, Sara M, Calabria F, Cortesogno L. Selective incorporation of foreign material inChondrosia reniformis(Porifera, Demospongiae). ACTA ACUST UNITED AC 1996. [DOI: 10.1080/11250009609356136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Bond C. Continuous cell movements rearrange anatomical structures in intact sponges. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1992; 263:284-302. [PMID: 1453156 DOI: 10.1002/jez.1402630308] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Time-lapse cinemicrography was used to record the active movements of cells in living intact sponges. Each of the three main cell types (pinacocytes, mesohyl cells, and choanocytes) continuously moved and rearranged themselves so that the internal anatomy of the sponge was continuously remodeled. The shape and appearance of the sponges anatomical structures often changed substantially within a few hours. The most motile were the mesohyl cells, with many moving as fast as one cell-length per minute (15 microns/min). Mesohyl cell locomotion was often accompanied by displacements of spicules, canals, and choanocyte chambers; the patterns of these displacements suggested that the mesohyl cells were providing the motive forces for these rearrangements. The locomotion of the pinacocytes varied according to position: those along the outer sponge margins were most active, whereas those in other parts of the surface moved relatively little. Choanocytes were never observed to undergo independent locomotion but were always found grouped together in choanocyte chambers. These choanocyte chambers interacted with pinacocytes and mesohyl cells to form excurrent canals, which continuously moved, fused with, and branched from one another. These observations suggest that the experimental phenomenon of sponge cell-reaggregation and reconstitution, discovered by H. V. Wilson, represents an extreme version of morphogenetic processes that normally go on continuously within intact sponges. The results from the present study also suggest that these cellular rearrangements are controlled by active cell movements and behavioral responses that include but are not limited to selective cell adhesion.
Collapse
|