1
|
Kaczmarek P, Metscher B, Rupik W. Embryology of the naso-palatal complex in Gekkota based on detailed 3D analysis in Lepidodactylus lugubris and Eublepharis macularius. J Anat 2021; 238:249-287. [PMID: 33169847 PMCID: PMC7812140 DOI: 10.1111/joa.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023] Open
Abstract
The vomeronasal organ (VNO), nasal cavity, lacrimal duct, choanal groove, and associated parts of the superficial (soft tissue) palate are called the naso-palatal complex. Despite the morphological diversity of the squamate noses, little is known about the embryological basis of this variation. Moreover, developmental data might be especially interesting in light of the morpho-molecular discordance of squamate phylogeny, since a 'molecular scenario' implies an occurrence of unexpected scale of homoplasy also in olfactory systems. In this study, we used X-ray microtomography and light microscopy to describe morphogenesis of the naso-palatal complex in two gekkotans: Lepidodactylus lugubris (Gekkonidae) and Eublepharis macularius (Eublepharidae). Our embryological data confirmed recent findings about the nature of some developmental processes in squamates, for example, involvement of the lateral nasal prominence in the formation of the choanal groove. Moreover, our study revealed previously unknown differences between the studied gekkotans and allows us to propose redefinition of the anterior concha of Sphenodon. Interpretation of some described conditions might be problematic in the phylogenetic context, since they represent unknown: squamate, nonophidian squamate, or gekkotan features.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| | - Brian Metscher
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceKatowicePoland
| |
Collapse
|
2
|
Kaczmarek P, Rupik W. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). J Morphol 2020; 282:378-407. [PMID: 33340145 DOI: 10.1002/jmor.21311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia-like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
3
|
Kaczmarek P, Janiszewska K, Metscher B, Rupik W. Development of the squamate naso-palatal complex: detailed 3D analysis of the vomeronasal organ and nasal cavity in the brown anole Anolis sagrei (Squamata: Iguania). Front Zool 2020; 17:28. [PMID: 32983242 PMCID: PMC7507828 DOI: 10.1186/s12983-020-00369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Despite the diverse morphology of the adult squamate naso-palatal complex - consisting of the nasal cavity, vomeronasal organ (VNO), choanal groove, lacrimal duct and superficial palate - little is known about the embryology of these structures. Moreover, there are no comprehensive studies concerning development of the nasal cavity and VNO in relation to the superficial palate. In this investigation, we used X-ray microtomography and histological sections to describe embryonic development of the naso-palatal complex of iguanian lizard, the brown anole (Anolis sagrei). The purpose of the study was to describe the mechanism of formation of adult morphology in this species, which combines the peculiar anole features with typical iguanian conditions. Considering the uncertain phylogenetic position of the Iguania within Squamata, embryological data and future comparative studies may shed new light on the evolution of this large squamate clade. Results Development of the naso-palatal complex was divided into three phases: early, middle and late. In the early developmental phase, the vomeronasal pit originates from medial outpocketing of the nasal pit, when the facial prominences are weakly developed. In the middle developmental phase, the following events can be noted: the formation of the frontonasal mass, separation of the vestibulum, appearance of the lacrimal duct, and formation of the choanal groove, which leads to separation of the VNO from the nasal cavity. In late development, the nasal cavity and the VNO attain their adult morphology. The lacrimal duct establishes an extensive connection with the choanal groove, which eventually becomes largely separated from the oral cavity. Conclusions Unlike in other tetrapods, the primordium of the lacrimal duct in the brown anole develops largely beyond the nasolacrimal groove. In contrast to previous studies on squamates, the maxillary prominence is found to participate in the initial fusion with the frontonasal mass. Moreover, formation of the choanal groove occurs due to the fusion of the vomerine cushion to the subconchal fold, rather than to the choanal fold. The loss or significant reduction of the lateral nasal concha is secondary. Some features of anole adult morphology, such as the closure of the choanal groove, may constitute adaptations to vomeronasal chemoreception.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Katarzyna Janiszewska
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Brian Metscher
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
4
|
Kaczmarek P, Hermyt M, Rupik W. Embryology of the VNO and associated structures in the grass snake Natrix natrix (Squamata: Naticinae): a 3D perspective. Front Zool 2017; 14:1. [PMID: 28101121 PMCID: PMC5237294 DOI: 10.1186/s12983-017-0188-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/02/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Snakes are considered to be vomerolfaction specialists. They are members of one of the most diverse groups of vertebrates, Squamata. The vomeronasal organ and the associated structures (such as the lacrimal duct, choanal groove, lamina transversalis anterior and cupola Jacobsoni) of adult lizards and snakes have received much anatomical, histological, physiological and behavioural attention. However, only limited embryological investigation into these structures, constrained to some anatomical or cellular studies and brief surveys, has been carried out thus far. The purpose of this study was, first, to examine the embryonic development of the vomeronasal organ and the associated structures in the grass snake (Natrix natrix), using three-dimensional reconstructions based on histological studies, and, second, to compare the obtained results with those presented in known publications on other snakes and lizards. RESULTS Five major developmental processes were taken into consideration in this study: separation of the vomeronasal organ from the nasal cavity and its specialization, development of the mushroom body, formation of the lacrimal duct, development of the cupola Jacobsoni and its relation to the vomeronasal nerve, and specialization of the sensory epithelium. Our visualizations showed the VNO in relation to the nasal cavity, choanal groove, lacrimal duct and cupola Jacobsoni at different embryonic stages. We confirmed that the choanal groove disappears gradually, which indicates that this structure is absent in adult grass snakes. On our histological sections, we observed a gradual growth in the height of the columns of the vomeronasal sensory epithelium and widening of the spaces between them. CONCLUSIONS The main ophidian taxa (Scolecophidia, Henophidia and Caenophidia), just like other squamate clades, seem to be evolutionarily conservative at some levels with respect to the VNO and associated structures morphology. Thus, it was possible to homologize certain embryonic levels of the anatomical and histological complexity, observed in the grass snake, with adult conditions of certain groups of Squamata. This may reflect evolutionary shift in Squamata from visually oriented predators to vomerolfaction specialists. Our descriptions offer material useful for future comparative studies of Squamata, both at their anatomical and histological levels.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| | - Mateusz Hermyt
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa Str, 40-007 Katowice, Poland
| |
Collapse
|
5
|
Horie S, Yamaki A, Takami S. Presence of Sex Steroid-Metabolizing Enzymes in the Olfactory Mucosa of Rats. Anat Rec (Hoboken) 2016; 300:402-414. [PMID: 27737514 DOI: 10.1002/ar.23497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022]
Abstract
Although several lines of evidence have suggested that sex steroids influence olfaction, little is known about the cellular basis of steroid-metabolizing enzymes in the olfactory system. Thus, we aimed to examine gene expression and immunolocalization of four sex steroid-metabolizing enzymes in the olfactory mucosa (OM) of albino rats; steroid side chain-cleaving enzyme (P450scc), 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD-1), 17β-HSD type 2 (17β-HSD-2), and aromatase. P450scc is known to catalyze conversion from cholesterol to pregnenolone. 17β-HSD-1 catalyzes conversion from estrone to estradiol, and 17β-HSD-2 does the reverse. Aromatase catalyzes the conversion from testosterone to estradiol-17β. Messenger (m) RNAs of all four enzymes mentioned above were detected in the OM. Western blot analysis demonstrated that P450scc, 17β-HSD-1, and 17β-HSD-2 were detected in the OM. Immunoreactivity for these three enzymes was observed in sustentacular cells of the olfactory epithelium and acinar cells of Bowman's glands. Immunoelectron microscopy analysis demonstrated immunoreactivity for P450scc in mitochondria, and for 17β-HSD-1 and 17β-HSD-2 in the well-developed smooth endoplasmic reticulum and myeloid bodies of the sustentacular cells. The present study suggests that sustentacular cells and acinar cells of the Bowman's glands in the rat OM express at least three of the steroid-metabolizing enzymes, that is, P450scc 17β-HSD-1, and 17β-HSD-2, and de novo synthesis of estradiol takes place in the OM. Anat Rec, 300:402-414, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sawa Horie
- Laboratory of Anatomy and Celluler Biology Graduate School of Health Sciences, Kyorin University, Tokyo, Japan.,Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Akiko Yamaki
- Department of Biomedical Laboratory Science Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Shigeru Takami
- Laboratory of Anatomy and Celluler Biology Graduate School of Health Sciences, Kyorin University, Tokyo, Japan.,Sakai Electron Microscopy Application Laboratory, Saitama, Japan.,Department of Physical Therapy Faculty of Social Work Studies, Josai International University, Chiba-ken, Japan.,Laboratory of Neuroscience Department of Physiology, Iwate Medical University School of Dentistry, Iwate, Japan
| |
Collapse
|
6
|
Abstract
The olfactory receptor organs and their primary centers are classified into
several types. The receptor organs are divided into fish-type olfactory epithelium (OE),
mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess
epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and
snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the
mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are
unique to Xenopus and turtles, respectively. The recess epithelium is
unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely
observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes.
The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess
epithelium seem to be descendants of the fish-type OE that is derived from the putative
primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and
differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers
are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type
accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and
succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may
be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians,
lizards, snakes and mammals and may be the remnant of the fish-type MOB.
Collapse
Affiliation(s)
- Kazuyuki Taniguchi
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | |
Collapse
|
7
|
Kondoh D, Yamamoto Y, Nakamuta N, Taniguchi K, Taniguchi K. Seasonal changes in the histochemical properties of the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgata. Anat Histol Embryol 2011; 41:41-53. [PMID: 21895741 DOI: 10.1111/j.1439-0264.2011.01101.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seasonal changes in the histochemical properties of the vomeronasal and olfactory epithelia of the Japanese striped snake were examined in four seasons, viz. the reproductive, pre-hibernating, hibernating and post-hibernating seasons. In the vomeronasal and olfactory supporting cells, secretory granules were much more abundant in the hibernating season than in the other seasons. In the vomeronasal and olfactory receptor cells, the lipofuscin granules were much fewer in the post-hibernating season than in the other seasons. In histochemical studies with 21 lectins, several lectins stained the vomeronasal and olfactory epithelia (receptor cells, supporting cells and free border) more weakly in the hibernating season than in the reproductive season. However, all lectins stained both epithelia in the hibernating season after sialic acid removal in a similar manner as in the reproductive season after sialic acid removal. These lectin histochemical studies indicate that sialic acid residues in the vomeronasal and olfactory epithelia are more numerous in the hibernating season than in the reproductive season. The results suggest that during hibernation, the vomeronasal and olfactory receptor cells possibly undergo rapid cell turnover, and that during this time, the vomeronasal and olfactory epithelia are securely protected from pathogens by an innate immune defence system.
Collapse
Affiliation(s)
- D Kondoh
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu, Gifu, Japan
| | | | | | | | | |
Collapse
|
8
|
Fine structure of the vomeronasal organ in the grass lizard, Takydromus tachydromoides. Tissue Cell 2010; 42:322-7. [DOI: 10.1016/j.tice.2010.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/04/2010] [Accepted: 07/08/2010] [Indexed: 11/20/2022]
|
9
|
Hasegawa R, Takami S, Nishiyama F. Immunoelectron microscopic analysis of the distribution of tyrosine kinase receptor B in olfactory axons. Anat Sci Int 2009; 83:186-94. [PMID: 19159346 DOI: 10.1111/j.1447-073x.2007.00208.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To determine the morphological basis for the neurotrophic effects of brain-derived neurotrophic factor (BDNF) in the primary olfactory pathway (POP), tyrosine kinase receptor B (TrkB), a membrane-bound receptor for BDNF, was identified and localized in axons of olfactory receptor cells (ORC) of neonatal rat olfactory mucosa using immuno-histochemical and -cytochemical techniques. Initially, the immunospecificity of an anti-TrkB antibody that had been used as a specific antibody for full-length TrkB was confirmed in the olfactory mucosa. Then, a combination of a reduced osmium-LR-White and post-embedding immunogold technique was applied to ORC axons in the lamina propria just beneath the olfactory epithelium. Immunogold particles, which indicate TrkB immunoreactivity, were noted either in close association with the plasma membranes of ORC axons, and designated plasma-lemmal (PL), or within their cytoplasm, and designated cytoplasmic (CP). Most PL particles were seen in the CP portion of the axonal plasma membranes, suggesting that the anti-TrkB antibody binds to the membrane-inserted TrkB that acts as a functional receptor. Some CP particles were on vesicular structures. Quantitative analysis demonstrated that the ratio of CP to PL particles was 7:3, and this ratio was constant between animals examined (n = 5). Because membrane proteins are wrapped in vesicles and transported within the axonal cytoplasm and inserted into the plasma membrane to function there, the present study suggests that TrkB is transported within the cytoplasm of ORC axons and is positioned as a functional receptor for BDNF in their membranes.
Collapse
Affiliation(s)
- Rumi Hasegawa
- Laboratory of Anatomy, Faculty and Graduate School of Health Sciences, Kyorin University, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Wakabayashi Y, Ichikawa M. Localization of G protein alpha subunits and morphology of receptor neurons in olfactory and vomeronasal epithelia in Reeve's turtle, Geoclemys reevesii. Zoolog Sci 2008; 25:178-87. [PMID: 18533749 DOI: 10.2108/zsj.25.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/27/2007] [Indexed: 11/17/2022]
Abstract
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.
Collapse
Affiliation(s)
- Yoshihiro Wakabayashi
- Laboratory of Cell Biology and Anatomy, Department of Neuroscience Basic Technology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | |
Collapse
|
11
|
Rehorek SJ, Firth BT, Hutchinson MN. The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ. J Biosci 2000. [DOI: 10.1007/bf03404913] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Takami S, Getchell ML, Getchell TV. Resolution of sensory and mucoid glycoconjugates with terminal alpha-galactose residues in the mucomicrovillar complex of the vomeronasal sensory epithelium by dual confocal laser scanning microscopy. Cell Tissue Res 1995; 280:211-6. [PMID: 7781021 DOI: 10.1007/bf00307791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The organization of the mucomicrovillar complex of the vomeronasal sensory epithelium of adult rats was examined using confocal laser scanning microscopy. In specimens labeled with the FITC-conjugated isolectin B4 of Bandeiraea simplicifolia, which recognizes terminal alpha-galactose sugar residues of glycoconjugates, we demonstrated that the mucomicrovillar complex was composed of islet-like structures with a high-density alpha-galactose core. The mucomicrovillar complex was further resolved into sensory and mucoid components in double-labeling and dual scanning experiments. The sensory component, which consists of the dendritic terminals of olfactory marker protein-immunoreactive vomeronasal receptor neurons, contained cytosolic glycoconjugates with terminal alpha-galactose sugar residues. The extracellular mucoid component consisted of glycoconjugates containing terminal alpha-galactose derived from the glands associated with the vomeronasal organ. These results demonstrated the complex microchemical organization of the sensory and mucoid components of the mucomicrovillar complex.
Collapse
Affiliation(s)
- S Takami
- Department of Physiology, University of Kentucky College of Medicine, Lexington 40536-0084, USA
| | | | | |
Collapse
|
13
|
Eisthen HL. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 1992; 23:1-21. [PMID: 1392068 DOI: 10.1002/jemt.1070230102] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper, the evolutionary origin of the vomeronasal system as a discrete sensory system separate from olfaction is examined. The presence of a discrete vomeronasal system appears to be a derived character in tetrapods, and its presence in larval amphibians indicates that the system did not arise as a terrestrial adaptation. The vomeronasal system has been lost independently in several taxa, including crocodilians, some bats, cetaceans, and some primates. The presence of microvillar receptor cells in the vomeronasal epithelium appears to be the ancestral condition for tetrapods, and alternative hypotheses concerning the ancestral condition for receptor cell types in the vertebrate olfactory epithelium are discussed. Finally, the possibility that the vomeronasal system is present in some fishes in a form that has not been recognized is discussed in relation to the phylogenetic distribution of receptor cell types in vertebrates.
Collapse
Affiliation(s)
- H L Eisthen
- Program in Neural Science, Indiana University, Bloomington 47405
| |
Collapse
|