1
|
Hamidi K, Matin MM, Pérez MJ, Kilpatrick CW, Darvish J. Postcranial skeleton of Goodwin's brush-tailed mouse (Calomyscus elburzensis Goodwin, 1939) (Rodentia: Calomyscidae): Shape, size, function, and locomotor adaptation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1059-1101. [PMID: 37698162 DOI: 10.1002/jez.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Goodwin's brush-tailed mouse (Calomyscus elburzensis Goodwin, 1939) is a poorly known small rodent that occupies rocky habitats in Iran, Turkmenistan, Afghanistan, Pakistan, Azerbaijan, and Syria. Herein, a detailed description of the shape, size, and function of the postcranial skeleton of this species is presented for the first time. Trapping was carried out in eastern Iran between the years 2013 and 2015. Skeletal parts of 24 adult male specimens were removed using the papain digestion protocol, and several postcranial morphological characteristics and measurements were examined. We attempted to achieve a morpho-functional characterization of Goodwin's brush-tailed mouse and to match morphological specializations with previous information on the ecology, behavior, and phylogenetic inferences of this rodent. Goodwin's brush-tailed mouse has extended transverse processes and long zygapophyses in the first five caudal vertebrae along with a good innervation of the caudal vertebrae, which has resulted in a well-developed basal musculature of the tail. It has extended forelimb, long ilium, and short post-acetabular part of the innominate bone, loose hip joint with high degree of lateral movement of the hindlimb, and long distal elements of the hindlimb. These features have resulted in fast terrestrial movements in open microhabitats, including climbing and jumping. Although superficial scratching of the ground is observed, the species is incapable of digging burrows. Evaluation of postcranial morphological characteristics and character states further indicated the basal radiation of the genus Calomyscus among other Muroidea. Findings constitute a source of information for morpho-functional and phylogenetic comparisons between Calomyscidae and other mouse-like muroids.
Collapse
Affiliation(s)
- Kordiyeh Hamidi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Julieta Pérez
- Instituto de Investigaciones de Biodiversidad Argentina (PIDBA) y Programa de Conservación de los Murciélagos de Argentina (PCMA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | - Jamshid Darvish
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research Group of Rodentology, Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Montoya-Sanhueza G, Bennett NC, Chinsamy A, Šumbera R. Functional anatomy and disparity of the postcranial skeleton of African mole-rats (Bathyergidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The burrowing adaptations of the appendicular system of African mole-rats (Bathyergidae) have been comparatively less investigated than their cranial adaptations. Because bathyergids exhibit different digging modes (scratch-digging and chisel-tooth digging) and social systems (from solitary to highly social), they are a unique group to assess the effects of distinct biomechanical regimes and social organization on morphology. We investigated the morphological diversity and intraspecific variation of the appendicular system of a large dataset of mole-rats (n = 244) including seven species and all six bathyergid genera. Seventeen morpho-functional indices from stylopodial (femur, humerus) and zeugopodial (ulna, tibia-fibula) elements were analyzed with multivariate analysis. We hypothesized that scratch-diggers (i.e., Bathyergus) would exhibit a more specialized skeletal phenotype favoring powerful forelimb digging as compared to the chisel-tooth diggers, and that among chisel-tooth diggers, the social taxa will exhibit decreased limb bone specializations as compared to solitary taxa due to colony members sharing the costs of digging. Our results show that most bathyergids have highly specialized fossorial traits, although such specializations were not more developed in Bathyergus (or solitary species), as predicted. Most chisel tooth-diggers are equally, or more specialized than scratch-diggers. Heterocephalus glaber contrasted significantly from other bathyergids, presenting a surprisingly less specialized fossorial morphology. Our data suggests that despite our expectations, chisel-tooth diggers have a suite of appendicular adaptations that have allowed them to maximize different aspects of burrowing, including shoulder and neck support for forward force production, transport and removal of soils out of the burrow, and bidirectional locomotion. It is probably that both postcranial and cranial adaptations in bathyergids have played an important role in the successful colonization of a wide range of habitats and soil conditions within their present distribution.
Collapse
|
3
|
Calede JJM. The oldest semi-aquatic beaver in the world and a new hypothesis for the evolution of locomotion in Castoridae. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220926. [PMID: 36016911 DOI: 10.6084/m9.figshare.c.6154283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 05/25/2023]
Abstract
The North American rodent fossil record includes hundreds of species representing both an incredible taxonomic diversity and great ecological disparity. Although it is during the Oligocene that taxonomic diversity first peaks, it is not until the Miocene, almost 10 Myr later, that many ecologies, particularly locomotory ecologies, are recorded. Here, I present a new Oligocene-aged species of beaver from Montana, Microtheriomys articulaquaticus sp. nov., which represents the oldest semi-aquatic rodent in North America and the oldest amphibious beaver in the world, pushing the advent of semi-aquatic ecology in beavers by 7 Myr. I also provide morphological data supporting a terrestrial ecology for the sister taxon to Castoridae. Together with existing data, these findings lead to a new hypothesis for the evolutionary ecology of castorids whereby swimming was exapted from burrowing during the Oligocene. This evolution of semi-aquatic locomotion may have taken place in North America instead of Eurasia. It started in small beavers with gigantism achieved only much later. Indeed, body size evolution in castoroids follows a directional drift. Beavers obey Cope's rule, a selection for larger size over time that appears associated with semi-aquatic ecology and may well explain their low modern diversity.
Collapse
Affiliation(s)
- Jonathan J M Calede
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Marion, 1459 Mount Vernon Avenue, Marion, OH 43302, USA
| |
Collapse
|
4
|
Calede JJM. The oldest semi-aquatic beaver in the world and a new hypothesis for the evolution of locomotion in Castoridae. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220926. [PMID: 36016911 PMCID: PMC9399697 DOI: 10.1098/rsos.220926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 05/10/2023]
Abstract
The North American rodent fossil record includes hundreds of species representing both an incredible taxonomic diversity and great ecological disparity. Although it is during the Oligocene that taxonomic diversity first peaks, it is not until the Miocene, almost 10 Myr later, that many ecologies, particularly locomotory ecologies, are recorded. Here, I present a new Oligocene-aged species of beaver from Montana, Microtheriomys articulaquaticus sp. nov., which represents the oldest semi-aquatic rodent in North America and the oldest amphibious beaver in the world, pushing the advent of semi-aquatic ecology in beavers by 7 Myr. I also provide morphological data supporting a terrestrial ecology for the sister taxon to Castoridae. Together with existing data, these findings lead to a new hypothesis for the evolutionary ecology of castorids whereby swimming was exapted from burrowing during the Oligocene. This evolution of semi-aquatic locomotion may have taken place in North America instead of Eurasia. It started in small beavers with gigantism achieved only much later. Indeed, body size evolution in castoroids follows a directional drift. Beavers obey Cope's rule, a selection for larger size over time that appears associated with semi-aquatic ecology and may well explain their low modern diversity.
Collapse
Affiliation(s)
- Jonathan J. M. Calede
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Marion, 1459 Mount Vernon Avenue, Marion, OH 43302, USA
| |
Collapse
|
5
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Pevsner SK, Grossnickle DM, Luo ZX. The functional diversity of marsupial limbs is influenced by both ecology and developmental constraint. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Extant marsupials are less ecologically diverse than placentals, and this is reflected by placentals exhibiting a greater diversity of locomotor modes, including powered flight and fully aquatic swimming. One proposed explanation for this discrepancy is that the development of more disparate marsupial forelimbs is prevented by the neonate’s crawl to the pouch, which requires precocious forelimb development for climbing adaptations. To test predictions of this Developmental Constraint Hypothesis (DCH), we pursue a comparative morphometric study on osteological traits of mammalian limbs, with an emphasis on functional differentiation of marsupial limbs among locomotor modes. We apply multivariate analyses to a large dataset of limb metrics and a diverse sample of mammals, with the placental sample limited to taxa whose locomotor modes are exhibited in marsupials. Overall, we do not find consistent evidence in support of the DCH. Diprotodontia serves as an exception, with comparisons of their forelimbs to hind limbs supporting the DCH. Our results suggest that developmental constraints on marsupial forelimbs may have limited marsupial diversity to some degree. Despite this, the marsupial locomotor groups show unexpectedly high levels of morphological differentiation relative to placentals of the same locomotor modes, indicating that ecological functions may overcome developmental constraints on a macroevolutionary scale.
Collapse
Affiliation(s)
- Spencer K Pevsner
- School of Earth Sciences, University of Bristol, Bristol, UK
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA
| | | | - Zhe-Xi Luo
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Sahd L, Bennett NC, Kotzé SH. Hind foot drumming: Volumetric micro-computed tomography investigation of the hind limb musculature of three African mole-rat species (Bathyergidae). J Anat 2022; 240:23-33. [PMID: 34374084 PMCID: PMC8655198 DOI: 10.1111/joa.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022] Open
Abstract
Several species of African mole-rats use seismic signalling by means of hind foot drumming for communication. The present study aimed to create three-dimensional reconstructions and compare volumetric measurements of 27 muscles of the hind limb of two drumming (Georychus capensis and Bathyergus suillus) and one non-drumming (Cryptomys hottentotus natalensis) species of African mole-rats. Diffusible iodine contrast-enhanced micro-computed tomography (diceCT) scans were performed on six specimens per species. Manual segmentation of the scans using VGMAX Studio imaging software allowed for individual muscles to be separated while automatically determining the volume of each muscle. The volume of the individual muscles was expressed as a percentage of the total hind limb volume and statistically compared between species. Subsequently, three-dimensional reconstructions of these muscles were created. Musculus gracilis anticus had a significantly larger percentage of the total hind limb muscle volume in both drumming species compared to the non-drumming C. h. natalensis. Furthermore, several hip and knee extensors, namely mm. gluteus superficialis, semimembranosus, gluteofemoralis, rectus femoris and vastus lateralis, had significantly larger muscle volume percentages in the two drumming species (G. capensis and B. suillus) compared to the non-drumming species. While not statistically significant, G. capensis had larger muscle volume percentages in several key hip and knee extensors compared to B. suillus. Additionally, G capensis had the largest summed percentage of the total hind limb volume in the hip flexor, hip extensor, knee extensor and ankle plantar flexor muscle groups in all the three species. This could be indicative of whole muscle hypertrophy in these muscles due to fast eccentric contractions that occur during hind foot drumming. However, significantly larger muscle volume percentages were observed in the scratch digging B. suillus compared to the other two chisel tooth digging species. Moreover, while not statistically significant, B. suillus had larger muscle volume percentages in several hip extensor and knee flexor muscles compared to G. capensis (except for m. vastus lateralis). These differences could be due to the large relative size of this species but could also be influenced by the scratch digging strategy employed by B. suillus. Therefore, while the action of hind foot drumming seems to influence certain key muscle volumes, digging strategy and body size may also play a role.
Collapse
Affiliation(s)
- Lauren Sahd
- Division of Clinical AnatomyDepartment of Biomedical SciencesFaculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Nigel C. Bennett
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Sanet H. Kotzé
- Division of Clinical AnatomyDepartment of Biomedical SciencesFaculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- Department of Biomedical SciencesRoss University School of Veterinary MedicineBasseterreSt Kitts and Nevis
| |
Collapse
|
8
|
Durão AF, Muñoz-Muñoz F, Ventura J. Postnatal ontogeny of the femur in fossorial and semiaquatic water voles in the 3D-shape space. Anat Rec (Hoboken) 2021; 305:1073-1086. [PMID: 34515418 DOI: 10.1002/ar.24765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
Water voles of the genus Arvicola constitute an excellent subject to investigate to which extent function affects postnatal developmental growth of limb structures in phylogenetically close species. We performed a comparative analysis of postweaning femur form changes between Arvicola sapidus (semiaquatic) and Arvicola scherman (fossorial) using three-dimensional landmark-based geometric morphometrics. In both species, we observed greater femur robustness in juvenile individuals than in adult ones, probably due to the accommodation of high loads on the bone during initial locomotor efforts. Significant interspecific differences were also found in the femur size and shape of adult specimens, as well as in the postnatal allometric and phenotypic trajectories. In terms of phenotypic variation, fossorial water voles show relatively wider third and lesser trochanters, and greater femur robustness than A. sapidus, characters associated to the digging activity. In contrast, A. sapidus displays a slight increase of the greater trochanter in comparison with A. scherman, which is seemingly an adaptive response for enhancing propulsion through the water. Results evidence that certain morphological traits and differences between A. sapidus and A. scherman in the allometric and phenotypic trajectories of the femur are associated with their different locomotor mode.
Collapse
Affiliation(s)
- Ana Filipa Durão
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain.,Àrea de recerca en petits mamífers, Museu de Ciències Naturals de Granollers "La Tela", Barcelona, Spain
| |
Collapse
|
9
|
Marshall SK, Spainhower KB, Sinn BT, Diggins TP, Butcher MT. Hind Limb Bone Proportions Reveal Unexpected Morphofunctional Diversification in Xenarthrans. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09537-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Tavares WC, Pessôa LM. Effects of size, phylogeny and locomotor habits on the pelvic and femoral morphology of South American spiny rats (Rodentia: Echimyidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The rodent family Echimyidae (spiny rats, hutias and coypu) is notable for its high phylogenetic and ecological diversity, encompassing ~100 living species with body mass ranging from 70 to 4500 g, including arboreal, epigean (non-arboreal or scansorial), fossorial and semi-aquatic taxa. In view of this diversity, it was hypothesized that echimyid morphological variation in the pelvis and femur should reflect: (1) allometric association with body mass; (2) morphofunctional specializations for the different locomotor habits; and (3) phylogenetic history. To test these propositions, we examined 30 echimyid species, in addition to eight species of two other octodontoid families, Abrocomidae and Octodontidae. Pelvic and femoral variation was assessed with linear morphometry, using bivariate and multivariate statistical methods, part of which was phylogenetically informed. Approximately 80% of the total variation among echimyids was explained by body mass, and some univariate measurements were found potentially to be effective as body mass estimators after simple allometric procedures, notably in the pelvis. Even considering the significant phylogenetic signal, variation in shape was largely structured by locomotor habits, mainly in the pelvis, suggesting that the echimyid hindlimb diversification was driven, in part, by selective pressures related to locomotor habits. Finally, echimyid femoral disparity was considerably greater than in other octodontoids, contrasting with their relatively modest cranial variation. Thus, this study suggests that hindlimb diversity constitutes a key factor for the exceptional echimyid ecological and phyletic diversification.
Collapse
Affiliation(s)
- William Corrêa Tavares
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leila Maria Pessôa
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Weaver LN, Grossnickle DM. Functional diversity of small-mammal postcrania is linked to both substrate preference and body size. Curr Zool 2020; 66:539-553. [PMID: 33293932 PMCID: PMC7705507 DOI: 10.1093/cz/zoaa057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/14/2020] [Indexed: 01/18/2023] Open
Abstract
Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity.
Collapse
Affiliation(s)
- Lucas N Weaver
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA 98195, USA
| | - David M Grossnickle
- Department of Biology, Life Sciences Building, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Janis CM, Martín-Serra A. Postcranial elements of small mammals as indicators of locomotion and habitat. PeerJ 2020; 8:e9634. [PMID: 32953256 PMCID: PMC7474524 DOI: 10.7717/peerj.9634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
Many studies have shown a correlation between postcranial anatomy and locomotor behavior in mammals, but the postcrania of small mammals (<5 kg) is often considered to be uninformative of their mode of locomotion due to their more generalized overall anatomy. Such small body size was true of all mammals during the Mesozoic. Anatomical correlates of locomotor behavior are easier to determine in larger mammals, but useful information can be obtained from the smaller ones. Limb bone proportions (e.g., brachial index) can be useful locomotor indicators; but complete skeletons, or even complete long bones, are rare for Mesozoic mammals, although isolated articular surfaces are often preserved. Here we examine the correlation of the morphology of long bone joint anatomy (specifically articular surfaces) and locomotor behavior in extant small mammals and demonstrate that such anatomy may be useful for determining the locomotor mode of Mesozoic mammals, at least for the therian mammals.
Collapse
Affiliation(s)
- Christine M. Janis
- School of Earth Sciences, University of Bristol, Bristol, Avon, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | |
Collapse
|
13
|
Beck RMD, Louys J, Brewer P, Archer M, Black KH, Tedford RH. A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes). Sci Rep 2020; 10:9741. [PMID: 32587406 PMCID: PMC7316786 DOI: 10.1038/s41598-020-66425-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 01/07/2023] Open
Abstract
We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defined here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. There appear to have been at least six independent acquisitions of very large (>100 kg) body size within Vombatiformes, several having already occurred by the late Oligocene.
Collapse
Affiliation(s)
- Robin M D Beck
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK. .,PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Julien Louys
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia
| | - Philippa Brewer
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Michael Archer
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Karen H Black
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard H Tedford
- Division of Paleontology, American Museum of Natural History, New York, USA
| |
Collapse
|
14
|
Everson KM, Goodman SM, Olson LE. Speciation and gene flow in two sympatric small mammals from Madagascar, Microgale fotsifotsy and M. soricoides (Mammalia: Tenrecidae). Mol Ecol 2020; 29:1717-1729. [PMID: 32270561 DOI: 10.1111/mec.15433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
Madagascar's shrew tenrecs (Mammalia: Tenrecidae; Microgale, Nesogale) represent an excellent system for studying speciation. Most species are endemic to the island's eastern humid forests, a region renowned for high levels of biodiversity and a high rate of in situ diversification. We set out to understand the speciation dynamics in a clade of recently described taxa: Microgale fotsifotsy and M. soricoides, which have nearly identical distributions in the moist evergreen forest, and M. nasoloi, which occurs in the western dry deciduous forest. A phylogenetic analysis using mitochondrial DNA data recovered two distinct clades of M. fotsifotsy: a south clade that is sister to, and broadly sympatric with, M. soricoides, and a north clade that is sister to the dry-forest and distantly allopatric species M. nasoloi. To better understand this result, we analysed cranioskeletal measurements and performed demographic analyses using nuclear sequence data from ultraconserved elements. Nuclear data did not support a sister relationship between M. soricoides and the south clade of M. fotsifotsy but did demonstrate introgression between these clades, which probably explains the discordance between nuclear and mitochondrial phylogenies. Demographic analyses also revealed the absence of gene flow between the north and south clades of M. fotsifotsy. Morphometric data revealed several major differences between M. soricoides and M. fotsifotsy, as well as more subtle differences between the two clades of M. fotsifotsy. In light of these results, we treat the south clade of M. fotsifotsy as a new candidate species. Our findings demonstrate the utility of integrating multiple data types to understand complex speciation histories, and contribute to a growing body of evidence that species diversity on Madagascar is underestimated.
Collapse
Affiliation(s)
- Kathryn M Everson
- University of Alaska Museum, Fairbanks, AK, USA.,Biology Department, University of Kentucky, Lexington, KY, USA
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, USA.,Association Vahatra, Antananarivo, Madagascar
| | | |
Collapse
|
15
|
Sahd L, Bennett NC, Kotzé SH. Hind foot drumming: Morphofunctional analysis of the hind limb osteology in three species of African mole-rats (Bathyergidae). J Morphol 2020; 281:438-449. [PMID: 32031740 DOI: 10.1002/jmor.21110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 11/05/2022]
Abstract
Hind foot drumming is a form of seismic signaling that plays a vital role in the communication of several Bathyergidae species. Hind foot drumming is initiated by the rapid movement of the whole hind limb by flexion and extension of the hip and knee. This study aimed to determine if morphological adaptations of the hind limb osteology were measurable using established morphometric analyses in two drumming (Bathyergus suillus and Georychus capensis) and one non-drumming (Cryptomys hottentotus natalensis) African mole-rat species. Forty-three linear measurements of the hind limb were taken in 48 limbs (n = 16 limbs per species) and 32 indices were calculated. Mixed model analysis of variance was used to compare the three species and sexes within a species. Thirteen indices had significant differences between species. Eleven indices had significant differences between sexes within a species. Significant differences between the drumming (B. suillus and G. capensis) and the non-drumming species were observed in three indices. The femoral greater trochanter was relatively shorter in the drumming species compared to the non-drumming species, which is proposed to allow for increased hip joint mobility, thereby permitting drummers to move their limbs at the rapid speed required to generate seismic signals. Furthermore, the small in-lever (shorter greater trochanter) may increase the velocity of limb motion. The robust tibias in the drumming species, as indicated by the tibial robustness index, are likely to counter the additional biomechanical load caused by the muscles involved in hind foot drumming. The relatively small hind feet seen in the drumming species allows for reduced limb weight needed for the rapid extension and flexion motion required during hind foot drumming. The significant differences reflected in the hind limb osteological indices between B. suillus and G. capensis and the non-drumming species are indicative of adaptations for hind foot drumming.
Collapse
Affiliation(s)
- Lauren Sahd
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria 0002, Pretoria, South Africa
| | - Sanet H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| |
Collapse
|
16
|
Eyal S, Kult S, Rubin S, Krief S, Felsenthal N, Pineault KM, Leshkowitz D, Salame TM, Addadi Y, Wellik DM, Zelzer E. Bone morphology is regulated modularly by global and regional genetic programs. Development 2019; 146:dev.167882. [PMID: 31221640 DOI: 10.1242/dev.167882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9 +/Scx + superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9 +/Scx + progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Shiri Kult
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Sarah Rubin
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Sharon Krief
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Neta Felsenthal
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| | - Kyriel M Pineault
- University of Wisconsin-Madison, Department of Cell & Regenerative Biology, Madison, WI 53705, USA
| | - Dena Leshkowitz
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Yoseph Addadi
- Weizmann Institute of Science, Department of Life Sciences Core Facilities, Rehovot 76100, Israel
| | - Deneen M Wellik
- University of Wisconsin-Madison, Department of Cell & Regenerative Biology, Madison, WI 53705, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot 76100, Israel
| |
Collapse
|
17
|
Abello MA, Candela AM. Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09470-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Jäger KRK, Luo ZX, Martin T. Postcranial Skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and Locomotor Adaptation. J MAMM EVOL 2019. [DOI: 10.1007/s10914-018-09457-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Wölfer J, Amson E, Arnold P, Botton-Divet L, Fabre AC, van Heteren AH, Nyakatura JA. Femoral morphology of sciuromorph rodents in light of scaling and locomotor ecology. J Anat 2019; 234:731-747. [PMID: 30957252 DOI: 10.1111/joa.12980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2019] [Indexed: 11/26/2022] Open
Abstract
Sciuromorph rodents are a monophyletic group comprising about 300 species with a body mass range spanning three orders of magnitude and various locomotor behaviors that we categorized into arboreal, fossorial and aerial. The purpose of this study was to investigate how the interplay of locomotor ecology and body mass affects the morphology of the sciuromorph locomotor apparatus. The most proximal skeletal element of the hind limb, i.e. the femur, was selected, because it was shown to reflect a functional signal in various mammalian taxa. We analyzed univariate traits (effective femoral length, various robustness variables and the in-levers of the muscles attaching to the greater, third and lesser trochanters) as well as femoral shape, representing a multivariate trait. An ordinary least-squares regression including 177 species was used to test for a significant interaction effect between body mass and locomotor ecology on the variables. Specifically, it tested whether the scaling patterns of the fossorial and aerial groups differ when compared with the arboreal, because the latter was identified as the ancestral sciuromorph condition via stochastic character mapping. We expected aerial species to display the highest trait values for a given body mass as well as the steepest slopes, followed by the arboreal and fossorial species along this order. An Ornstein-Uhlenbeck regression fitted to a phylogenetically pruned dataset of 140 species revealed the phylogenetic inertia to be very low in the univariate traits, hence justifying the utilization of standard regressions. These variables generally scaled close to isometry, suggesting that scaling adjustments might not have played a major role for most of the femoral features. Nevertheless, the low phylogenetic inertia indicates that the observed scaling patterns needed to be maintained during sciuromorph evolution. Significant interaction effects were discovered in the femoral length, the centroid size of the condyles, and the in-levers of the greater and third trochanters. Additionally, adjustments in various femoral traits reflect the acquisitions of fossorial and aerial behaviors from arboreal ancestors. Using sciuromorphs as a focal clade, our findings exemplify the importance of statistically accounting for potential interaction effects of different environmental factors in studies relating morphology to ecology.
Collapse
Affiliation(s)
- Jan Wölfer
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Bild Wissen Gestaltung, Ein Interdisziplinäres Labor, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eli Amson
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Bild Wissen Gestaltung, Ein Interdisziplinäres Labor, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Patrick Arnold
- Institut für Anatomie I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.,Institut für Zoologie und Evolutionsforschung, mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-Universität Jena, Jena, Germany.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Léo Botton-Divet
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,UMR 7179, Centre National de la Recherche Scientifique, Pavillon d'Anatomie Comparée, Muséum national d'Histoire naturelle, Paris, France
| | - Anne-Claire Fabre
- UMR 7179, Centre National de la Recherche Scientifique, Pavillon d'Anatomie Comparée, Muséum national d'Histoire naturelle, Paris, France.,Life Sciences Department, The Natural History Museum, London, UK
| | - Anneke H van Heteren
- Sektion Mammalogie, Zoologische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany.,Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Bild Wissen Gestaltung, Ein Interdisziplinäres Labor, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Felsenthal N, Rubin S, Stern T, Krief S, Pal D, Pryce BA, Schweitzer R, Zelzer E. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 2018; 145:dev.165381. [PMID: 30504126 DOI: 10.1242/dev.165381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9 + cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Maga AM, Beck RMD. Skeleton of an unusual, cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44-43 million years ago) of Turkey. PLoS One 2017; 12:e0181712. [PMID: 28813431 PMCID: PMC5559079 DOI: 10.1371/journal.pone.0181712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 06/09/2017] [Indexed: 12/28/2022] Open
Abstract
We describe a near-complete, three-dimensionally preserved skeleton of a metatherian (relative of modern marsupials) from the middle Eocene (Lutetian: 44–43 million years ago) Lülük member of the Uzunçarşıdere Formation, central Turkey. With an estimated body mass of 3–4 kg, about the size of a domestic cat (Felis catus) or spotted quoll (Dasyurus maculatus), it is an order of magnitude larger than the largest fossil metatherians previously known from the Cenozoic of the northern hemisphere. This new taxon is characterised by large, broad third premolars that probably represent adaptations for hard object feeding (durophagy), and its craniodental morphology suggests the capacity to generate high bite forces. Qualitative and quantitative functional analyses of its postcranial skeleton indicate that it was probably scansorial and relatively agile, perhaps broadly similar in locomotor mode to the spotted quoll, but with a greater capacity for climbing and grasping. Bayesian phylogenetic analysis of a total evidence dataset comprising 259 morphological characters and 9kb of DNA sequence data from five nuclear protein-coding genes, using both undated and “tip-and-node dating” approaches, place the new taxon outside the marsupial crown-clade, but within the clade Marsupialiformes. It demonstrates that at least one metatherian lineage evolved to occupy the small-medium, meso- or hypo-carnivore niche in the northern hemisphere during the early Cenozoic, at a time when there were numerous eutherians (placentals and their fossil relatives) filling similar niches. However, the known mammal fauna from Uzunçarşıdere Formation appears highly endemic, and geological evidence suggests that this region of Turkey was an island for at least part of the early Cenozoic, and so the new taxon may have evolved in isolation from potential eutherian competitors. Nevertheless, the new taxon reveals previously unsuspected ecomorphological disparity among northern hemisphere metatherians during the first half of the Cenozoic.
Collapse
Affiliation(s)
- A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America.,Department of Anthropology, University of Washington, Seattle, Washington, United States of America.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Robin M D Beck
- School of Environmental and Life Sciences, University of Salford, Manchester, Salford, United Kingdom.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Martín-Serra A, Figueirido B, Palmqvist P. In the Pursuit of the Predatory Behavior of Borophagines (Mammalia, Carnivora, Canidae): Inferences from Forelimb Morphology. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9321-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
García-Esponda CM, Candela AM. Hindlimb musculature of the largest living rodentHydrochoerus hydrochaeris(Caviomorpha): Adaptations to semiaquatic and terrestrial styles of life. J Morphol 2015; 277:286-305. [DOI: 10.1002/jmor.20495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- César M. García-Esponda
- Cátedra Zoología III Vertebrados, Facultad de Ciencias Naturales y Museo; Universidad Nacional de La Plata; Avenida 122 y 60 La Plata 1900 Argentina
| | - Adriana M. Candela
- CONICET, División Paleontología Vertebrados; Museo de La Plata, Paseo del Bosque La Plata 1900 Argentina
| |
Collapse
|
24
|
Sylvester AD. Femoral condyle curvature is correlated with knee walking kinematics in ungulates. Anat Rec (Hoboken) 2015; 298:2039-50. [PMID: 26414648 DOI: 10.1002/ar.23274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022]
Abstract
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland
| |
Collapse
|
25
|
Stern T, Aviram R, Rot C, Galili T, Sharir A, Kalish Achrai N, Keller Y, Shahar R, Zelzer E. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biol 2015; 13:e1002212. [PMID: 26241802 PMCID: PMC4524611 DOI: 10.1371/journal.pbio.1002212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/26/2015] [Indexed: 11/19/2022] Open
Abstract
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. A novel computational approach for studying bone morphogenesis reveals that the longitudinal proportions of developing long bones are accurately maintained throughout elongation by the balance between proximal and distal growth rates. One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation. Therefore, superstructure position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, by analyzing a massive database of micro-CT images of developing mouse long bones, we show that all superstructures maintain their relative positions throughout development. It has been suggested that during development, superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. However, our analysis reveals that most superstructures did not drift at all, implying the involvement of another mechanism. Indeed, we identify a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between the growth rates from its two ends, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| | - Rona Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yosi Keller
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| |
Collapse
|
26
|
Finlay S, Cooper N. Morphological diversity in tenrecs (Afrosoricida, Tenrecidae): comparing tenrec skull diversity to their closest relatives. PeerJ 2015; 3:e927. [PMID: 25945316 PMCID: PMC4419542 DOI: 10.7717/peerj.927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022] Open
Abstract
It is important to quantify patterns of morphological diversity to enhance our understanding of variation in ecological and evolutionary traits. Here, we present a quantitative analysis of morphological diversity in a family of small mammals, the tenrecs (Afrosoricida, Tenrecidae). Tenrecs are often cited as an example of an exceptionally morphologically diverse group. However, this assumption has not been tested quantitatively. We use geometric morphometric analyses of skull shape to test whether tenrecs are more morphologically diverse than their closest relatives, the golden moles (Afrosoricida, Chrysochloridae). Tenrecs occupy a wider range of ecological niches than golden moles so we predict that they will be more morphologically diverse. Contrary to our expectations, we find that tenrec skulls are only more morphologically diverse than golden moles when measured in lateral view. Furthermore, similarities among the species-rich Microgale tenrec genus appear to mask higher morphological diversity in the rest of the family. These results reveal new insights into the morphological diversity of tenrecs and highlight the importance of using quantitative methods to test qualitative assumptions about patterns of morphological diversity.
Collapse
Affiliation(s)
- Sive Finlay
- School of Natural Sciences, Trinity College Dublin , Dublin , Ireland
| | - Natalie Cooper
- School of Natural Sciences, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
27
|
Woodman N, Gaffney SA. Can they dig it? Functional morphology and semifossoriality among small-eared shrews, genusCryptotis(Mammalia, Soricidae). J Morphol 2014; 275:745-59. [DOI: 10.1002/jmor.20254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/05/2013] [Accepted: 12/31/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Neal Woodman
- USGS Patuxent Wildlife Research Center; National Museum of Natural History, Smithsonian Institution; Washington D. C Washington 20013-7012
| | - Sarah A. Gaffney
- Department of Biological Sciences; Smith College; Northampton Massachusetts 01063
| |
Collapse
|
28
|
Carrizo LV, Tulli MJ, Dos Santos DA, Abdala V. Interplay between postcranial morphology and locomotor types in Neotropical sigmodontine rodents. J Anat 2013; 224:469-81. [PMID: 24372154 DOI: 10.1111/joa.12152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 11/29/2022] Open
Abstract
Sigmodontine rats are one of the most diverse components of the Neotropical mammal fauna. They exhibit a wide ecological diversity and a variety of locomotor types that allow them to occupy different environments. To explore the relationship between morphology and locomotor types, we analyzed traits of the postcranial osteology (axial and appendicular skeletons) of 329 specimens belonging to 51 species and 29 genera of sigmodontines exhibiting different locomotor types. In this work, postcranial skeletal characters of these rats are considered in an ecomorphological study for the first time. Statistical analyses showed that of the 34 osteological characters considered, 15 were related to the locomotor types studied, except for ambulatory. However, character mapping showed that climbing and jumping sigmodontines are the only taxa exhibiting clear adaptations in their postcranial osteology, which are highly consistent with the tendencies described in many other mammal taxa. Climbing, digging and swimming rats presented statistically differences in traits associated with their vertebral column and limbs, whereas jumping rats showed modifications associated with all the skeletal regions. Our data suggest that sigmodontine rats retain an all-purpose morphology that allows them to use a variety of habitats. This versatility is particularly important when considering the lack of specialization of sigmodontines for a specific locomotor mode. Another possible interpretation is that our dataset probably did not consider relevant information about these groups and should be increased with other types of characters (e.g. characters from the external morphology, myology, etc.).
Collapse
Affiliation(s)
- Luz V Carrizo
- Cátedra de Biología General, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
29
|
Reese AT, Lanier HC, Sargis EJ. Skeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae). J Morphol 2013; 274:585-602. [DOI: 10.1002/jmor.20127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/16/2012] [Accepted: 12/16/2012] [Indexed: 11/08/2022]
|
30
|
Sylvester AD, Pfisterer T. Quantifying lateral femoral condyle ellipticalness in chimpanzees, gorillas, and humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:458-67. [DOI: 10.1002/ajpa.22144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
|
31
|
Chen M, Luo ZX. Postcranial Skeleton of the Cretaceous Mammal Akidolestes cifellii and Its Locomotor Adaptations. J MAMM EVOL 2012. [DOI: 10.1007/s10914-012-9199-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Fujiwara SI, Endo H, Hutchinson JR. Topsy-turvy locomotion: biomechanical specializations of the elbow in suspended quadrupeds reflect inverted gravitational constraints. J Anat 2011; 219:176-91. [PMID: 21477151 PMCID: PMC3162238 DOI: 10.1111/j.1469-7580.2011.01379.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 11/26/2022] Open
Abstract
Some tetrapods hang upside down from tree branches when moving horizontally. The ability to walk in quadrupedal suspension has been acquired independently in at least 14 mammalian lineages. During the stance (supportive) phase of quadrupedal suspension, the elbow joint flexor muscles (not the extensors as in upright vertebrates moving overground) are expected to contract to maintain the flexed limb posture. Therefore muscular control in inverted, suspended quadrupeds may require changes of muscle control, and even morphologies, to conditions opposite to those in upright animals. However, the relationships between musculoskeletal morphologies and elbow joint postures during the stance phase in suspended quadrupeds have not been investigated. Our analysis comparing postures and skeletal morphologies in Choloepus (Pilosa), Pteropus (Chiroptera), Nycticebus (Primates) and Cynocephalus (Dermoptera) revealed that the elbow joints of these animals were kept at flexed angles of 70-100 ° during the stance phase of quadrupedal suspension. At these joint angles the moment arms of the elbow joint flexors were roughly maximized, optimizing that component of antigravity support. Our additional measurements from various mammalian species show that suspended quadrupeds have relatively small extensor/flexor ratios in both muscle masses and maximum moment arms. Thus, in contrast to the pattern in normal terrestrial quadrupeds, suspended quadrupeds emphasize flexor over extensor muscles for body support. This condition has evolved independently multiple times, attendant with a loss or reduction of the ability to move in normal upright postures.
Collapse
|
33
|
Asher RJ, Helgen KM. Nomenclature and placental mammal phylogeny. BMC Evol Biol 2010; 10:102. [PMID: 20406454 PMCID: PMC2865478 DOI: 10.1186/1471-2148-10-102] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 04/20/2010] [Indexed: 11/20/2022] Open
Abstract
An issue arising from recent progress in establishing the placental mammal Tree of Life concerns the nomenclature of high-level clades. Fortunately, there are now several well-supported clades among extant mammals that require unambiguous, stable names. Although the International Code of Zoological Nomenclature does not apply above the Linnean rank of family, and while consensus on the adoption of competing systems of nomenclature does not yet exist, there is a clear, historical basis upon which to arbitrate among competing names for high-level mammalian clades. Here, we recommend application of the principles of priority and stability, as laid down by G.G. Simpson in 1945, to discriminate among proposed names for high-level taxa. We apply these principles to specific cases among placental mammals with broad relevance for taxonomy, and close with particular emphasis on the Afrotherian family Tenrecidae. We conclude that no matter how reconstructions of the Tree of Life change in years to come, systematists should apply new names reluctantly, deferring to those already published and maximizing consistency with existing nomenclature.
Collapse
Affiliation(s)
- Robert J Asher
- Museum of Zoology, University of Cambridge, Downing St, CB2 3EJ UK
| | - Kristofer M Helgen
- National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 108 Washington, DC 20013-7012 USA
| |
Collapse
|
34
|
García-Esponda CM, Candela AM. Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance. MAMMALIA 2010. [DOI: 10.1515/mamm.2010.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|