1
|
Kahle P, Gallus M, Kierdorf H, Kierdorf U. Age estimation in the harbour seal (Phoca vitulina) based on the closure of skull sutures and synchondroses. Anat Histol Embryol 2023; 52:300-311. [PMID: 36367169 DOI: 10.1111/ahe.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Age estimation of individuals is an important tool for the management of marine mammals and is mostly done by microscopic analysis of growth layer groups (GLGs) in teeth (cementum and dentin) and bone. The present study evaluated the use of sutural and synchondrosal closure in the skull of the harbour seal (Phoca vitulina) as a potential non-destructive alternative for age estimation. For that, we scored the ectocranial closure of 12 selected sutures and synchondroses in a sample of 303 Eastern Atlantic harbour seals (P. v. vitulina; 138 males, 165 females), for which data on age at death were available, based on determined gross-morphological criteria in individuals younger than 1 year and cement layer analysis in canines in older individuals. A strong positive relationship between the sum of closure level scores (SCS) and age (males: r = 0.8797, females: r = 0.8825) was recorded, which was stronger than that for the relationship between age and condylobasal length (CBL, males: r = 0.7085, females: 0.7086) (all p-values <0.0001). In adult individuals (≥5 years), CBL was higher in males than females (p < 0.0001), while SCS did not significantly differ between the two sexes (p = 0.148). Our findings show that the analysis of sutural/synchondrosal closure is a valid alternative for age estimation in harbour seals, thereby confirming results of previous studies on other pinniped species.
Collapse
Affiliation(s)
- Patricia Kahle
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Maren Gallus
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
2
|
Nikolova S, Toneva D, Georgiev I, Lazarov N. Sagittal suture maturation: Morphological reorganization, relation to aging, and reliability as an age-at-death indicator. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:78-92. [PMID: 30848843 DOI: 10.1002/ajpa.23810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The sagittal suture (SS) is assumed to be an initial site for the commencement of cranial suture closure as well as the most frequent spot of isolated craniosynostosis. The present study aimed to inspect the reorganization of the SS at the microlevel to assess the relation between its closure and aging and to establish whether it could be used as a reliable indicator in age-at-death prediction. MATERIALS AND METHODS The SS was investigated in 68 dry contemporary adult male skulls of known age-at-death. An additional series of 20 skulls was used for verification. The skulls were scanned using a micro-computed tomography system. The SS closure degree was assessed along the three bone layers on cross-sectional tomograms by using a scoring scale. RESULTS In the entirely open SS, the bone edges consist of compact bone and are widely separated. With SS maturation, the bone edges come into contact, and the remodeling process leads to a decrease in the sutural area and bone homogenization across all three layers. SS closure is an irregular process roughly related to aging, beginning in the early 20s, reaching its peak at about 30 years of age and abating in the late 40s. DISCUSSION Although related to aging, SS closure is not a simple function of it. Rather, the underlying factors inducing and managing this process are multifaceted and complex. Although the etiology of SS maturation remains unclear, it is reasonable to use SS closure cautiously and only as a supportive method for age prediction.
Collapse
Affiliation(s)
- Silviya Nikolova
- Department of Anthropology and Anatomy, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Toneva
- Department of Anthropology and Anatomy, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivan Georgiev
- Department of Scientific Computations, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Department of Mathematical Modeling and Numerical Analysis, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria.,Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Lowenstine LJ, McManamon R, Terio KA. Apes. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7173580 DOI: 10.1016/b978-0-12-805306-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Oh J, Oh HS, Kimura J, Koyabu D. Intraspecific variation of the interparietal suture closure in Siberian roe deer Capreolus pygargus from Jeju Island. J Vet Med Sci 2017; 79:2052-2056. [PMID: 29109355 PMCID: PMC5745190 DOI: 10.1292/jvms.17-0270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sequence of cranial suture closure among cervids is reported to be generally species-specific and highly conservative within species. On the other hand, it is known that intraspecific variation often exists to some extent in other mammalian taxa. Here we studied the cranial suture closures of Capreolus pygargus from Jeju Island and compared it with other cervid species. We found that the timing of the interparietal suture closure is highly variable within C. pygargus. Capreolus capreolus similarly shows intraspecific variation of the interparietal suture closure, whereas other cervid species studied to date do not show any intraspecific variation in the sequence of cranial suture closure. Such high intraspecific variation of the interparietal suture may be a derived character for Capreolus.
Collapse
Affiliation(s)
- Jinwoo Oh
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hong-Shik Oh
- Department of Science Education, Jeju National University, Jeju 690-750, Republic of Korea
| | - Junpei Kimura
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Daisuke Koyabu
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Smith TD, McMahon MJ, Millen ME, Llera C, Engel SM, Li L, Bhatnagar KP, Burrows AM, Zumpano MP, DeLeon VB. Growth and Development at the Sphenoethmoidal Junction in Perinatal Primates. Anat Rec (Hoboken) 2017; 300:2115-2137. [DOI: 10.1002/ar.23630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy D. Smith
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
- Department of AnthropologyUniversity of PittsburghPittsburgh Pennsylvania
| | - Matthew J. McMahon
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Michelle E. Millen
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Catherine Llera
- Department of AnthropologyUniversity of FloridaGainesville Florida
| | - Serena M. Engel
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Ly Li
- Department of Physical TherapyDuquesne UniversityPittsburgh Pennsylvania
| | - Kunwar P. Bhatnagar
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisville Kentucky
| | - Anne M. Burrows
- Department of AnthropologyUniversity of PittsburghPittsburgh Pennsylvania
- Department of Physical TherapyDuquesne UniversityPittsburgh Pennsylvania
| | - Michael P. Zumpano
- Department of Basic SciencesNew York Chiropractic CollegeSeneca Falls New York
| | | |
Collapse
|
6
|
Oh J, Kim YK, Yasuda M, Koyabu D, Kimura J. Cranial suture closure pattern in water deer and implications of suture evolution in cervids. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Wu BH, Kou XX, Zhang C, Zhang YM, Cui Z, Wang XD, Liu Y, Liu DW, Zhou YH. Stretch force guides finger-like pattern of bone formation in suture. PLoS One 2017; 12:e0177159. [PMID: 28472133 PMCID: PMC5417680 DOI: 10.1371/journal.pone.0177159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/24/2017] [Indexed: 01/06/2023] Open
Abstract
Mechanical tension is widely applied on the suture to modulate the growth of craniofacial bones. Deeply understanding the features of bone formation in expanding sutures could help us to improve the outcomes of clinical treatment and avoid some side effects. Although there are reports that have uncovered some biological characteristics, the regular pattern of sutural bone formation in response to expansion forces is still unknown. Our study was to investigate the shape, arrangement and orientation of new bone formation in expanding sutures and explore related clinical implications. The premaxillary sutures of rat, which histologically resembles the sutures of human beings, became wider progressively under stretch force. Micro-CT detected new bones at day 3. Morphologically, these bones were forming in a finger-like pattern, projecting from the maxillae into the expanded sutures. There were about 4 finger-like bones appearing on the selected micro-CT sections at day 3 and this number increased to about 18 at day 7. The average length of these projections increased from 0.14 mm at day 3 to 0.81 mm at day 7. The volume of these bony protuberances increased to the highest level of 0.12 mm3 at day 7. HE staining demonstrated that these finger-like bones had thick bases connecting with the maxillae and thin fronts stretching into the expanded suture. Nasal sections had a higher frequency of finger-like bones occuring than the oral sections at day 3 and day 5. Masson-stained sections showed stretched fibers embedding into maxillary margins. Osteocalcin-positive osteoblasts changed their shapes from cuboidal to spindle and covered the surfaces of finger-like bones continuously. Alizarin red S and calcein deposited in the inner and outer layers of finger-like bones respectively, which showed that longer and larger bones formed on the nasal side of expanded sutures compared with the oral side. Interestingly, these finger-like bones were almost paralleling with the direction of stretch force. Inclined force led to inclined finger-like bones formation and deflection of bilateral maxillae. Additionally, heavily compressive force caused fracture of finger-like bones in the sutures. These data together proposed the special finger-like pattern of bone formation in sutures guided by stretch force, providing important implications for maxillary expansion.
Collapse
Affiliation(s)
- Bo-Hai Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xiao-Xing Kou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Ci Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Yi-Mei Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Zhen Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xue-Dong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Da-Wei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail: (YHZ); (DWL)
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail: (YHZ); (DWL)
| |
Collapse
|
8
|
Osteoprotegerin deficiency results in disruption of posterofrontal suture closure in mice: implications in nonsyndromic craniosynostosis. Plast Reconstr Surg 2015; 135:990e-999e. [PMID: 26017615 DOI: 10.1097/prs.0000000000001284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Little is known about the role of osteoclasts in cranial suture fusion. Osteoclasts are predominantly regulated by receptor activator of nuclear factor kappa B and receptor activator of nuclear factor kappa B ligand, both of which lead to osteoclast differentiation, activation, and survival; and osteoprotegerin, a soluble inhibitor of receptor activator of nuclear factor kappa B. The authors' work examines the role of osteoprotegerin in this process using knockout technology. METHODS Wild-type, osteoprotegerin-heterozygous, and osteoprotegerin-knockout mice were imaged by serial micro-computed tomography at 3, 5, 7, 9, and 16 weeks. Suture density measurements and craniometric analysis were performed at these same time points. Posterofrontal sutures were harvested from mice after the week-16 time point and analyzed by means of histochemistry. RESULTS Micro-computed tomographic analysis of the posterofrontal suture revealed reduced suture fusion in osteoprotegerin-knockout mice compared with wild-type and heterozygous littermates. Osteoprotegerin deficiency resulted in a statistically significant decrease in suture bone density in knockout mice. There was no reduction in the density of non-suture-containing calvarial bone between wild-type and osteoprotegerin-knockout mice. Histochemistry of suture sections supported these micro-computed tomographic findings. Finally, osteoprotegerin-knockout mice had reduced anteroposterior skull distance at all time points and an increased interorbital distance at the week-16 time point. CONCLUSION The authors' data suggest that perturbations in the expression of osteoprotegerin and subsequent changes in osteoclastogenesis lead to alterations in murine cranial and posterofrontal suture morphology.
Collapse
|
9
|
Abstract
CONTEXT Estimation of adult age from skeletal remains is problematic due to the weak and variable relationship between age indicators and age. OBJECTIVES To assess the proportion of variation in age indicators that is associated with factors other than age and to attempt to identify what those factors might be. METHODS The paper focuses on frequently used adult bony age markers. A literature search (principally using Web of Science) is conducted to assess the proportion of variation in age indicators associated with factors other than age. The biology of these age markers is discussed, as are factors other than age that might affect their expression. RESULTS Typically, ∼60% of variation in bony age indicators is associated with factors other than age. Factors including inherent metabolic propensity to form bone in soft tissue, vitamin D status, hormonal and reproductive factors, energy balance, biomechanical variables and genetic factors may be responsible for this variation, but empirical studies are few. CONCLUSION Most variation in adult skeletal age markers is due to factors other than age; dry bone study of historic documented skeletal collections and high resolution CT scanning in modern cadavers or living individuals is needed to identify these factors.
Collapse
Affiliation(s)
- Simon Mays
- a Historic England, Fort Cumberland , Eastney , Portsmouth , UK
| |
Collapse
|