1
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Sun L, Han S, Duan S, Mao L, Li F, Tu Z, Che H. Assessing and Comparing Potential Allergenicity of Two Partially Hydrolyzed Whey-Based Formulas for Infants: A Population-Based Study in China. Mol Nutr Food Res 2024:e2300909. [PMID: 38602246 DOI: 10.1002/mnfr.202300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Indexed: 04/12/2024]
Abstract
SCOPE In cases where breast milk is unavailable or inadequate, hydrolyzed infant formula is recommended as the primary alternative. The aim of this study is to assess and compare the allergenicity of two partially hydrolyzed whey-based formulas (PHF-Ws) using serum samples from patients with cow's milk allergy (CMA). METHODS AND RESULTS LC-MS/MS technology is used to investigate the peptide distribution in both samples. The immunoreactivity of two PHF-Ws in 27 serum samples from 50 Chinese infants (02 years) with CMA is analyzed. The results demonstrate that even with a similar a degree of hydrolysis (DH), primary protein sources, peptides with molecular weights <5 kDa, and differences in the number of residual allergenic epitopes in the hydrolyzed peptide segments can lead to varying immune responses. CONCLUSION The two PHF-Ws have notably high intolerance rates, exceeding 10% among infants with CMA. Therefore, suggesting that PHF-Ws may not be suitable for infants and children with CMA in China.
Collapse
Affiliation(s)
- Lijuan Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Shiwen Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Inner Mongolia Dairy Technology. Research Institute Co. Ltd., 8 Jinshan Road, Hohhot, Inner Mongolia, P. R. China
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Fang Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Inner Mongolia Dairy Technology. Research Institute Co. Ltd., 8 Jinshan Road, Hohhot, Inner Mongolia, P. R. China
| | - Zhenhua Tu
- China National Research Institute of Food & Fermentation Industries Co., Ltd., Building 6, Yard 24, Jiuxianqiao Middle Road, Chaoyang District, Beijing, P. R. China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
3
|
Zhou J, Li D, Zhang X, Liu C, Chen Y. Valorization of protein-rich waste and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166141. [PMID: 37586528 DOI: 10.1016/j.scitotenv.2023.166141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Energy shortages present significant challenges with the rising population and dramatic urbanization development. The effective utilization of high-value products generated from massive protein-rich waste has emerged as an excellent solution for mitigating the growing energy crisis. However, the traditional disposal and treatment of protein-rich waste, have been proven to be ineffective in resource utilization, which led to high chemical oxygen demand and water eutrophication. To effectively address this issue, hydrolysate and bioconversion products from protein-rich waste have been widely investigated. Herein, we aim to provide an overview of the valorization of protein-rich waste based on a comprehensive analysis of publicly available literature. Firstly, the sources of protein-rich waste with various quantities and qualities are systematically summarized. Then, we scrutinize and analyze the hydrolysis approaches of protein-rich waste and the versatile applications of hydrolyzed products. Moreover, the main factors influencing protein biotransformation and the applications of bioconversion products are covered and extensively discussed. Finally, the potential prospects and future directions for the valorization of protein-rich waste are proposed pertinently.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dapeng Li
- School of Environment Science and Engineering, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
4
|
The Role of Selected Serpins in Gastrointestinal (GI) Malignancies. J Clin Med 2022; 11:jcm11206225. [PMID: 36294546 PMCID: PMC9604722 DOI: 10.3390/jcm11206225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) cancers, which are a diverse group of malignant diseases, represent a major healthcare problem around the world. Due to the lack of specific symptoms in the early stages as well as insufficient diagnostic possibilities, these malignancies occupy the leading position in the causes of death worldwide. The currently available tests have too many limitations to be part of routine diagnostics. Therefore, new potential biomarkers that could be used as diagnostic and prognostic factors for these cancers are still being sought. Among the proteins that might fit this role are serpins, which are serine protease inhibitors. Although the serpins themselves have been known for many years, they have recently become the centre of attention for many authors, especially due to the fact that a number of proteins in this family are involved in many stages of neoplasia formation, from angiogenesis through tumour growth to progression. Therefore, the aim of this review is to present the current knowledge about the significance of serpins in GI malignancies, especially their involvement in the development and progression of oesophageal, gastric, pancreatic and colorectal cancers. This review summarises and confirms the important roles of selected serpins in the pathogenesis of various GI cancers and also points to their promising roles as therapeutic targets. However, due to the relatively nonspecific nature of serpins, future research should be carried out to elucidate the mechanisms involved in tumour pathogenesis in more detail.
Collapse
|
5
|
Cid-Gallegos MS, Corzo-Ríos LJ, Jiménez-Martínez C, Sánchez-Chino XM. Protease Inhibitors from Plants as Therapeutic Agents- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:20-29. [PMID: 35000105 DOI: 10.1007/s11130-022-00949-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 05/18/2023]
Abstract
Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- M S Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - L J Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, México City, C.P. 07340, México
| | - C Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - X M Sánchez-Chino
- CONACYT, Departamento de Salud, El Colegio de La Frontera Sur-Villahermosa, Tabasco, México.
| |
Collapse
|
6
|
Badoei-Dalfard A, Monemi F, Hassanshahian M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf B Biointerfaces 2021; 211:112302. [PMID: 34954517 DOI: 10.1016/j.colsurfb.2021.112302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Recently, hierarchical magnetic enzyme nanoflowers have been found extensive attention for efficient enzyme immobilization due to high surface area, low mass transfer limitations, active site accessibility, promotion of the enzymatic performance, and facile reusing. Herein, we report the purification of the Bacillus collagenase and then synthesis of magnetic cross-linked collagenase-metal hybrid nanoflowers (mcCNFs). The catalytic efficiency (kcat/Km) value of the immobilized collagenase was 2.2 times more than that of the free collagenase. The collagenase activity of mcCNFs enhanced about 2.9 and 4.6 at 85 and 90 °C, respectively, compared to free collagenase. Thermal stability of mcCNFs increased about 31% and 24% after 3 h of incubation at 50 and 60 °C, respectively. After 10 cycles of reusing, the mCNFs collagenase showed 83% of its initial activity. Results showed that the mcCNFs revealed 1.4 times more activity than the free collagenase in 0.16% protein waste. Furthermore, the hydrolysis value of chicken pie protein wastes by the immobilized enzyme obtained 4 times more than the free collagenase after 240 min incubation at 40 °C. Finally, our results showed that the construction of mcCNFs is an efficient method to increase the enzymatic performance and has excessive potential for the hydrolysis of protein wastes in the food industry.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Monemi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Echave J, Fraga-Corral M, Garcia-Perez P, Popović-Djordjević J, H. Avdović E, Radulović M, Xiao J, A. Prieto M, Simal-Gandara J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar Drugs 2021; 19:md19090500. [PMID: 34564162 PMCID: PMC8471739 DOI: 10.3390/md19090500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are industrially exploited for obtaining pigments, polysaccharides, or phenolic compounds with application in diverse fields. Nevertheless, their rich composition in fiber, minerals, and proteins, has pointed them as a useful source of these components. Seaweed proteins are nutritionally valuable and include several specific enzymes, glycoproteins, cell wall-attached proteins, phycobiliproteins, lectins, or peptides. Extraction of seaweed proteins requires the application of disruptive methods due to the heterogeneous cell wall composition of each macroalgae group. Hence, non-protein molecules like phenolics or polysaccharides may also be co-extracted, affecting the extraction yield. Therefore, depending on the macroalgae and target protein characteristics, the sample pretreatment, extraction and purification techniques must be carefully chosen. Traditional methods like solid-liquid or enzyme-assisted extraction (SLE or EAE) have proven successful. However, alternative techniques as ultrasound- or microwave-assisted extraction (UAE or MAE) can be more efficient. To obtain protein hydrolysates, these proteins are subjected to hydrolyzation reactions, whether with proteases or physical or chemical treatments that disrupt the proteins native folding. These hydrolysates and derived peptides are accounted for bioactive properties, like antioxidant, anti-inflammatory, antimicrobial, or antihypertensive activities, which can be applied to different sectors. In this work, current methods and challenges for protein extraction and purification from seaweeds are addressed, focusing on their potential industrial applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Jelena Popović-Djordjević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milanka Radulović
- Department of Bio-Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
8
|
Dzuvor CKO, Pan S, Amanze C, Amuzu P, Asakiya C, Kubi F. Bioactive components from Moringa oleifera seeds: production, functionalities and applications - a critical review. Crit Rev Biotechnol 2021; 42:271-293. [PMID: 34151645 DOI: 10.1080/07388551.2021.1931804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A readily distinguishable and indigenous member of the plant kingdom in the Indian subcontinent is the 'drumstick tree', i.e. Moringa oleifera Lam. In addition to India, this drought-tolerant and rapidly evolving tree is currently extensively disseminated across the globe, including subtropical and tropical areas. The plant boasts a high nutritional, nutraceutical and therapeutic profile, mainly attributing to its significant repertoire of the biologically active components in different parts: protein, flavonoids, saponins, phenolic acids, tannin, isothiocyanate, lipids, minerals, vitamins, amongst others. M. oleifera seeds have been shown to elicit a myriad of pharmacological potential and health benefits, including: antimicrobial, anticancer, antidiabetic, antioxidant, antihypertensive, anti-inflammatory and cardioprotective properties. Additionally, the seed cakes obtained from post-extraction process are utilized for: coagulation, flocculation and sedimentation purposes, benefiting effluent management and the purification of water, mainly because of their capability in eliminating microbes and organic matter. Despite the extraordinary focus on other parts of the plant, especially the foliage, the beneficial aspects of the seeds have not been sufficiently highlighted. The health benefits of bioactive components in the seeds are promising and demonstrate enough potential to facilitate the development of functional foods. In this review, we present a critical account of the types, characteristics, production and isolation of bioactive components from M. oleifera seeds. Furthermore, we appraise the: pharmacological activities, cosmetic, biodiesel, lubricative, modern farming, nutritive and wastewater treatment applications of these functional ingredients. We infer that there is a need for further human/clinical studies and evaluation, despite their health benefits. Additionally, the safety issues need to be adequately clarified and assessed, in order to establish a conventional therapeutic profile.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Melbourne, Australia
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Prosper Amuzu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P R China
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Francis Kubi
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Barber J, Sikakana P, Sadler C, Baud D, Valentin JP, Roberts R. A target safety assessment of the potential toxicological risks of targeting plasmepsin IX/X for the treatment of malaria. Toxicol Res (Camb) 2021; 10:203-213. [PMID: 33884171 DOI: 10.1093/toxres/tfaa106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
The aspartic proteases plasmepsin IX/X are important antimalarial drug targets due to their specificity to the malaria parasite and their vital role as mediators of disease progression. Focusing on parasite-specific targets where no human homologue exists reduces the possibility of on-target drug toxicity. However, there is a risk of toxicity driven by inadequate selectivity for plasmepsins IX/X in Plasmodium over related mammalian aspartic proteases. Of these, CatD/E may be of most toxicological relevance as CatD is a ubiquitous lysosomal enzyme present in most cell types and CatE is found in the gut and in erythrocytes, the clinically significant site of malarial infection. Based on mammalian aspartic protease physiology and adverse drug reactions (ADRs) to FDA-approved human immunodeficiency virus (HIV) aspartic protease inhibitors, we predicted several potential toxicities including β-cell and congenital abnormalities, hypotension, hypopigmentation, hyperlipidaemia, increased infection risk and respiratory, renal, gastrointestinal, dermatological, and other epithelial tissue toxicities. These ADRs to the HIV treatments are likely to be a result of host aspartic protease inhibition due a lack of specificity for the HIV protease; plasmepsins are much more closely related to human CatD than to HIV proteinase. Plasmepsin IX/X inhibition presents an opportunity to specifically target Plasmodium as an effective antimalarial treatment, providing adequate selectivity can be obtained. Potential plasmepsin IX/X inhibitors should be assayed for inhibitory activity against the main human aspartic proteases and particularly CatD/E. An investigative rodent study conducted early in drug discovery would serve as an initial risk assessment of the potential hazards identified.
Collapse
Affiliation(s)
- Jane Barber
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| | | | | | - Delphine Baud
- Medicines for Malaria Venture, 20 Route de Pré-Bois, Geneva 1215, Switzerland
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Building R9, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| |
Collapse
|
10
|
Araújo CAC, Pacheco JPF, Waniek PJ, Geraldo RB, Sibajev A, Dos Santos AL, Evangelho VGO, Dyson PJ, Azambuja P, Ratcliffe NA, Castro HC, Mello CB. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103823. [PMID: 32800901 DOI: 10.1016/j.dci.2020.103823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lectins are ubiquitous proteins involved in the immune defenses of different organisms and mainly responsible for non-self-recognition and agglutination reactions. This work describes molecular and biological characterization of a rhamnose-binding lectin (RBL) from Rhodnius prolixus, which possesses a 21 amino acid signal peptide and a mature protein of 34.6 kDa. The in-silico analysis of the primary and secondary structures of RpLec revealed a lectin domain fully conserved among previous insects studied. The three-dimensional homology model of RpLec was similar to other RBL-lectins. Docking predictions with the monosaccharides showed rhamnose and galactose-binding sites comparable to Latrophilin-1 and N-Acetylgalactosamine-binding in a different site. The effects of RpLec gene silencing on levels of infecting Trypanosoma cruzi Dm 28c and intestinal bacterial populations in the R. prolixus midgut were studied by injecting RpLec dsRNA into the R. prolixus hemocoel. Whereas T. cruzi numbers remained unchanged compared with the controls, numbers of bacteria increased significantly. The silencing also induced the up regulation of the R. prolixus defC (defensin) expression gene. These results with RpLec reveal the potential importance of this little studied molecule in the insect vector immune response and homeostasis of the gut bacterial microbiota.
Collapse
Affiliation(s)
- C A C Araújo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - J P F Pacheco
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Waniek
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - R B Geraldo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - A Sibajev
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Av. Cap. Enê Garcez 2413, Boa Vista, RR, CEP 69400-000, Brazil
| | - A L Dos Santos
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - V G O Evangelho
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - P Azambuja
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação, Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, CEP 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - N A Ratcliffe
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK
| | - H C Castro
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil.
| | - C B Mello
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Pont L, Barbosa J, Benavente F. A rapid and simple method for the determination of organic acids in proteolytic enzymes by capillary electrophoresis with indirect ultraviolet detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
13
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
14
|
McGillewie L, Ramesh M, Soliman ME. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. Protein J 2017; 36:385-396. [PMID: 28762197 DOI: 10.1007/s10930-017-9735-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa.
| |
Collapse
|
15
|
Atacan K, Çakıroğlu B, Özacar M. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int J Biol Macromol 2017; 97:148-155. [DOI: 10.1016/j.ijbiomac.2017.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
|
16
|
Rodrigues M, Carlesso WM, Kuhn D, Altmayer T, Martini MC, Tamiosso CD, Mallmann CA, De Souza CFV, Ethur EM, Hoehne L. Enzymatic hydrolysis of the Eisenia andreiearthworm: Characterization and evaluation of its properties. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1278754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mariano Rodrigues
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Wagner Manica Carlesso
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Daniel Kuhn
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Taciélen Altmayer
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Maira Cristina Martini
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Camila Durlo Tamiosso
- Laboratório de Análises Micotoxicológica, Universidade Federal de Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos Augusto Mallmann
- Laboratório de Análises Micotoxicológica, Universidade Federal de Santa Maria – UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Claucia Fernanda Volken De Souza
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Eduardo Miranda Ethur
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| | - Lucélia Hoehne
- Laboratório de Biotecnologia de Alimentos, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil and
| |
Collapse
|
17
|
Batista J, Clementino E, Nascimento T, Lima G, Porto T, Porto A, Porto C. Produção e caracterização de protease fibrinolítica de Streptomyces parvulus DPUA 1573. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-8605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
RESUMO As proteases fibrinolíticas são capazes de degradar coágulos de fibrina formados dentro dos vasos sanguíneos, evitando a trombose intravascular. Em animais, a tromboflebite, que acomete frequentemente os equinos, ocasiona, em seus casos graves, a obstrução jugular e também um edema de laringe, derivando a obstrução das vias aéreas, o que possibilita um edema cerebral, ocorrendo o óbito do animal. Devido ao fato de o tratamento ser de custo elevado, faz-se necessária a investigação de outras fontesde proteases fibrinolíticas com custos menores e com menos efeitos colaterais. Diante disso, este estudo tem como objetivo produzir e caracterizar proteases fibrinolíticas obtidas de Streptomyces parvulus DPUA 1573. Para produção da enzima, foi utilizado um planejamento fatorial 24 avaliando a concentração da farinha de soja (0,5, 1,0 e 1,5%) e da glicose (0, 0,5 e 1,0g/L), temperatura (28, 32 e 37ºC) e agitação (150, 200 e 250rpm) sobre a biomassa e a atividade fibrinolítica. Pode-se verificar que a protease fibrinolítica apresentou atividade máxima (835U/mL) nas condições de concentração de 1,5% de soja, 1g/L de glicose, 28°C e 150rpm com 48 horas de fermentação. A protease fibrinolítica obtida teve temperatura e pH ótimos de 55°C e pH 9,0, respectivamente. A atividade enzimática foi inibida pelo EDTA, pelo íon Fe2+ e pelo SDS, o que indicou a enzima ser uma metaloprotease. A linhagem Streptomyces parvulus DPUA 1573 foi capaz de produzir protease fibrinolítica, possuindo características bioquímicas favoráveis à aplicação na medicina veterinária e possivelmente humana.
Collapse
Affiliation(s)
| | | | | | | | | | - A.L.F. Porto
- Universidade Federal Rural de Pernambuco, Brazil
| | | |
Collapse
|
18
|
Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem 2016; 212:460-8. [DOI: 10.1016/j.foodchem.2016.06.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 01/05/2023]
|
19
|
Rizzello CG, Tagliazucchi D, Babini E, Sefora Rutella G, Taneyo Saa DL, Gianotti A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
20
|
Arguello Casteleiro M, Klein J, Stevens R. The Proteasix Ontology. J Biomed Semantics 2016; 7:33. [PMID: 27259807 PMCID: PMC4893253 DOI: 10.1186/s13326-016-0078-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background The Proteasix Ontology (PxO) is an ontology that supports the Proteasix tool; an open-source peptide-centric tool that can be used to predict automatically and in a large-scale fashion in silico the proteases involved in the generation of proteolytic cleavage fragments (peptides) Methods The PxO re-uses parts of the Protein Ontology, the three Gene Ontology sub-ontologies, the Chemical Entities of Biological Interest Ontology, the Sequence Ontology and bespoke extensions to the PxO in support of a series of roles: 1. To describe the known proteases and their target cleaveage sites. 2. To enable the description of proteolytic cleaveage fragments as the outputs of observed and predicted proteolysis. 3. To use knowledge about the function, species and cellular location of a protease and protein substrate to support the prioritisation of proteases in observed and predicted proteolysis. Results The PxO is designed to describe the biological underpinnings of the generation of peptides. The peptide-centric PxO seeks to support the Proteasix tool by separating domain knowledge from the operational knowledge used in protease prediction by Proteasix and to support the confirmation of its analyses and results. Availability The Proteasix Ontology may be found at: http://bioportal.bioontology.org/ontologies/PXO. This ontology is free and open for use by everyone. Electronic supplementary material The online version of this article (doi:10.1186/s13326-016-0078-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Julie Klein
- Institut National de la Sante et de la Recherche Medicale (INSERM), U1048, Toulouse, 24105, France
| | - Robert Stevens
- School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
21
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
23
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
24
|
Filip S, Pontillo C, Peter Schanstra J, Vlahou A, Mischak H, Klein J. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 2014; 11:535-48. [DOI: 10.1586/14789450.2014.926224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Fernández D, Russi S, Vendrell J, Monod M, Pallarès I. A functional and structural study of the major metalloprotease secreted by the pathogenic fungusAspergillus fumigatus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1946-57. [DOI: 10.1107/s0907444913017642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
Fungalysins are secreted fungal peptidases with the ability to degrade the extracellular matrix proteins elastin and collagen and are thought to act as virulence factors in diseases caused by fungi. Fungalysins constitute a unique family among zinc-dependent peptidases that bears low sequence similarity to known bacterial peptidases of the thermolysin family. The crystal structure of the archetype of the fungalysin family,Aspergillus fumigatusmetalloprotease (AfuMep), has been obtained for the first time. The 1.8 Å resolution structure of AfuMep corresponds to that of an autoproteolyzed proenzyme with separate polypeptide chains corresponding to the N-terminal prodomain in a binary complex with the C-terminal zinc-bound catalytic domain. The prodomain consists of a tandem of cystatin-like folds whose C-terminal end is buried into the active-site cleft of the catalytic domain. The catalytic domain harbouring the key catalytic zinc ion and its ligands, two histidines and one glutamic acid, undergoes a conspicuous rearrangement of its N-terminal end during maturation. One key positively charged amino-acid residue and the C-terminal disulfide bridge appear to contribute to its structural–functional properties. Thus, structural, biophysical and biochemical analysis were combined to provide a deeper comprehension of the underlying properties ofA. fumigatusfungalysin, serving as a framework for the as yet poorly known metallopeptidases from pathogenic fungi.
Collapse
|
26
|
|
27
|
Liporetro-D-peptides - A novel class of highly selective thrombin inhibitors. Thromb Res 2012; 129:e97-105. [DOI: 10.1016/j.thromres.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
|
28
|
McAllister-Lucas LM, Baens M, Lucas PC. MALT1 protease: a new therapeutic target in B lymphoma and beyond? Clin Cancer Res 2011; 17:6623-31. [PMID: 21868762 DOI: 10.1158/1078-0432.ccr-11-0467] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) as a gene that is perturbed in the B-cell neoplasm MALT lymphoma, already more than a decade ago, was the starting point for an intense area of research. The fascination with MALT1 was fueled further by the observation that it contains a domain homologous to the catalytic domain of caspases and thus, potentially, could function as a protease. Discoveries since then initially revealed that MALT1 is a key adaptor molecule in antigen receptor signaling to the transcription factor NF-κB, which is crucial for lymphocyte function. However, recent discoveries show that this function of MALT1 is not restricted to lymphocytes, witnessed by the ever-increasing list of receptors from cells within and outside of the immune system that require MALT1 for NF-κB activation. Yet, a role for MALT1 protease activity was shown only recently in immune signaling, and its importance was then further strengthened by the dependency of NF-κB-addicted B-cell lymphomas on this proteolytic activity. Therapeutic targeting of MALT1 protease activity might, therefore, become a useful approach for the treatment of these lymphomas and, additionally, an effective strategy for treating other neoplastic and inflammatory disorders associated with deregulated NF-κB signaling.
Collapse
Affiliation(s)
- Linda M McAllister-Lucas
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|