1
|
Konozy EH, Osman MEM. From inflammation to immune regulation: The dual nature of dietary lectins in health and disease. Heliyon 2024; 10:e39471. [PMID: 39502251 PMCID: PMC11535980 DOI: 10.1016/j.heliyon.2024.e39471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Beans, vegetables, fruits, and mushrooms offer a delightful array of fragrances and an abundance of nutrients, including essential vitamins, minerals, protein rich in vital amino acids, and omega-3 fatty acids. However, they may also contain lectins, carbohydrate-binding proteins with potential health risks. While some lectins exhibit stability and resistance to digestion, posing threats to gastrointestinal integrity and immune function, others, such as those from butterfly peas and pink bauhinia, show immunomodulatory properties that could bolster immune responses. While some lectins, such as phytohemagglutinin, have been associated with inflammatory responses and autoimmune disorders, others, such as wheat lectin, have shown potential benefits in nutrient absorption. Additionally, mushroom lectins, while generally nontoxic, exhibit immunomodulatory properties with implications for immune health. Despite their potential benefits, challenges remain in understanding lectin dosages, administration routes, and mechanisms of action. Further research is needed to elucidate the intricate roles of dietary lectins in immune function and autoimmune disorders. This review surveys the immunomodulatory effects of dietary lectins from plants and mushrooms, shedding light on their mechanisms of action. From inflammation modulation to potential autoimmune implications, the diverse roles of dietary lectins have been explored, highlighting avenues for future investigations and therapeutic exploration.
Collapse
Affiliation(s)
- Emadeldin H.E. Konozy
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University Omdurman, Khartoum State, Sudan
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana
| | | |
Collapse
|
2
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
3
|
Fortunato RH, Nores MJ. "Cow's Hoof" ( Bauhinia L., Leguminosae): A Review on Pharmacological Properties of Austral South American Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:31. [PMID: 36616160 PMCID: PMC9823647 DOI: 10.3390/plants12010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The genus Bauhinia s.l. (Leguminosae), known as cow's hoof, unha de boi or pata de vaca, has been used in traditional medicine worldwide. The aim of the present review is to summarize the studies published on the biological activity of the main native medicinal species reported in austral South America. Of the 14 species present in the region, 10 are consumed as leaf infusions to regulate glucose and lipid metabolism, as well as used for their anti-inflammatory and analgesic effects and to treat various diseases. Pharmacological properties have been recorded in seven species. Antioxidant, anticoagulant, antihypertensive, diuretic, antimicrobial and antitumor properties have been reported in B. forficata. Together with B. holophylla, they are important for their antidiabetic properties, since several studies indicate their effectiveness as a hypoglycemic agent. B. bauhinioides is distinguished for its anti-inflammatory and antithrombotic activities and S. microstachya for its analgesic properties. Anti-ulcer and wound healing activities recorded in B. holophylla and B. ungulata, respectively, are of particular interest. Most of the species possess antitumor activity. The antioxidant capacity of flavonoids and other bioactive compounds make these plants good candidates to assist or treat various alterations related with oxidative stress, such as diabetic complications. Thus, these species constitute promising targets for new bioactive substance research and phytotherapy.
Collapse
Affiliation(s)
| | - María Jimena Nores
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (CONICET—Universidad Nacional de Córdoba), UNC, Vélez Sarsfield 1611, Argentina
| |
Collapse
|
4
|
de Siqueira Patriota LL, de Brito Marques Ramos D, e Silva MG, dos Santos ACLA, Silva YA, Paiva PMG, Pontual EV, de Albuquerque LP, Mendes RL, Napoleão TH. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by the Microgramma vacciniifolia Frond Lectin (MvFL). Polymers (Basel) 2022; 14:polym14081609. [PMID: 35458359 PMCID: PMC9028213 DOI: 10.3390/polym14081609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/02/2023] Open
Abstract
Most anti-inflammatory drugs used nowadays have an excessive cost and their prolonged use has been connected with several injurious effects. Thus, the search for new anti-inflammatory agents is increasing. Lectins are carbohydrate-interacting proteins that can modulate immune response and the release of inflammation mediators. The Microgramma vacciniifolia frond lectin (MvFL) was previously reported to be an immunomodulatory agent in vitro. This work aimed to evaluate the effects of MvFL on the in vivo inflammatory status in the carrageenan-induced peritonitis and paw edema, using female Swiss mice. The animals were pretreated intraperitoneally with MvFL (5 and 10 mg/kg). In the peritonitis assay, the total and differential migration of white blood cells was evaluated, as well as the levels of cytokines, nitric oxide (NO), and total proteins in the peritoneal fluid. In the paw edema evaluation, the paw volume was measured in the early (from 30 min–2 h) and late (3–4 h) phases of edema formation. MvFL (5 and 10 mg/kg) was efficient in reducing neutrophil infiltration, pro-inflammatory cytokines (IL-6, IL-17, and TNF-α), NO, and protein content in the peritoneal fluid. It also repressed the edema formation in the late phase of the assay. In conclusion, MvFL showed inhibitory effects in in vivo acute inflammation, which encouraged future studies exploiting its immunomodulatory ability.
Collapse
Affiliation(s)
- Leydianne Leite de Siqueira Patriota
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil; (L.L.d.S.P.); (P.M.G.P.)
| | | | - Mariana Gama e Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina 56306-385, Pernambuco, Brazil; (M.G.e.S.); (A.C.L.A.d.S.); (Y.A.S.); (R.L.M.)
| | - Angela Caroline Lima Amorim dos Santos
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina 56306-385, Pernambuco, Brazil; (M.G.e.S.); (A.C.L.A.d.S.); (Y.A.S.); (R.L.M.)
| | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina 56306-385, Pernambuco, Brazil; (M.G.e.S.); (A.C.L.A.d.S.); (Y.A.S.); (R.L.M.)
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil; (L.L.d.S.P.); (P.M.G.P.)
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil;
| | | | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina 56306-385, Pernambuco, Brazil; (M.G.e.S.); (A.C.L.A.d.S.); (Y.A.S.); (R.L.M.)
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil; (L.L.d.S.P.); (P.M.G.P.)
- Correspondence:
| |
Collapse
|
5
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Oliveira MV, Lossio CF, Silva MTL, Bari AU, Lima LD, Souza-Filho CHD, Nascimento KS. Comprehensive review on Caelsalpinioideae lectins: From purification to biological activities. Int J Biol Macromol 2020; 162:333-348. [DOI: 10.1016/j.ijbiomac.2020.06.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
6
|
Kelm M, Lehoux S, Azcutia V, Cummings RD, Nusrat A, Parkos CA, Brazil JC. Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. FASEB J 2019; 34:2326-2343. [PMID: 31907993 DOI: 10.1096/fj.201902542r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well-described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N-linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation-dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N-glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN-associated tissue damage in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthias Kelm
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
7
|
da Silva Pinto L, Cardoso G, Kremer FS, dos Santos Woloski RD, Dellagostin OA, Campos VF. Heterologous expression and characterization of a new galactose-binding lectin from Bauhinia forficata with antiproliferative activity. Int J Biol Macromol 2019; 128:877-884. [DOI: 10.1016/j.ijbiomac.2019.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
|
8
|
Bauhinia lectins: Biochemical properties and biotechnological applications. Int J Biol Macromol 2018; 119:811-820. [DOI: 10.1016/j.ijbiomac.2018.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023]
|
9
|
Fontenelle TPC, Lima GC, Mesquita JX, Lopes JLDS, de Brito TV, Vieira Júnior FDC, Sales AB, Aragão KS, Souza MHLP, Barbosa ALDR, Freitas ALP. Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. Int J Biol Macromol 2018; 112:1122-1130. [DOI: 10.1016/j.ijbiomac.2018.02.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/10/2023]
|