1
|
Musiał N, Bogucka A, Tretiakow D, Skorek A, Ryl J, Czaplewska P. Proteomic analysis of sialoliths from calcified, lipid and mixed groups as a source of potential biomarkers of deposit formation in the salivary glands. Clin Proteomics 2023; 20:11. [PMID: 36949424 PMCID: PMC10035263 DOI: 10.1186/s12014-023-09402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.
Collapse
Affiliation(s)
- Natalia Musiał
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Aleksandra Bogucka
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
- Institute of Biochemistry, Medical Faculty, Justus Liebig University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
2
|
Effect of Ovocystatin on Amyloid β 1-42 Aggregation—In Vitro Studies. Int J Mol Sci 2023; 24:ijms24065433. [PMID: 36982505 PMCID: PMC10049317 DOI: 10.3390/ijms24065433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Amyloid β peptides (Aβ) aggregating in the brain have a potential neurotoxic effect and are believed to be a major cause of Alzheimer’s disease (AD) development. Thus, inhibiting amyloid polypeptide aggregation seems to be a promising approach to the therapy and prevention of this neurodegenerative disease. The research presented here is directed at the determination of the inhibitory activity of ovocystatin, the cysteine protease inhibitor isolated from egg white, on Aβ42 fibril genesis in vitro. Thioflavin-T (ThT) assays, which determine the degree of aggregation of amyloid peptides based on fluorescence measurement, circular dichroism spectroscopy (CD), and transmission electron microscopy (TEM) have been used to assess the inhibition of amyloid fibril formation by ovocystatin. Amyloid beta 42 oligomer toxicity was measured using the MTT test. The results have shown that ovocystatin possesses Aβ42 anti-aggregation activity and inhibits Aβ42 oligomer toxicity in PC12 cells. The results of this work may help in the development of potential substances able to prevent or delay the process of beta-amyloid aggregation—one of the main reasons for Alzheimer’s disease.
Collapse
|
3
|
Trial Proteomic Qualitative and Quantitative Analysis of the Protein Matrix of Submandibular Sialoliths. Molecules 2021; 26:molecules26216725. [PMID: 34771131 PMCID: PMC8588320 DOI: 10.3390/molecules26216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Our studies aimed to explore the protein components of the matrix of human submandibular gland sialoliths. A qualitative analysis was carried out based on the filter aided sample preparation (FASP) methodology. In the protein extraction process, we evaluated the applicability of the standard demineralization step and the use of a lysis buffer containing sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). The analysis of fragmentation spectra based on the human database allowed for the identification of 254 human proteins present in the deposits. In addition, the use of multi-round search in the PEAKS Studio program against the bacterial base allowed for the identification of 393 proteins of bacterial origin present in the extract obtained from sialolith, which so far has not been carried out for this biological material. Furthermore, we successfully applied the SWATH methodology, allowing for a relative quantitative analysis of human proteins present in deposits. The obtained results correlate with the classification of sialoliths proposed by Tretiakow. The performed functional analysis allowed for the first time the selection of proteins, the levels of which differ between the tested samples, which may suggest the role of these proteins in the calcification process in different types of sialoliths. These are preliminary studies, and drawing specific conclusions requires research on a larger group, but it provides us the basis for the continuation of the work that has already begun.
Collapse
|
4
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
5
|
Wu X, Xu G, Zhang S. Association Between Cystatin C and Cardiac Function and Long-Term Prognosis in Patients with Chronic Heart Failure. Med Sci Monit 2020; 26:e919422. [PMID: 32062670 PMCID: PMC7043349 DOI: 10.12659/msm.919422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the association between cystatin C and cardiac function and long-term prognosis in patients with chronic heart failure (CHF). MATERIAL AND METHODS We selected 418 CHF patients admitted to our hospital as subjects. Patients were divided into 3 groups according to the cystatin C level (Quantile 1 group: 0.65-1.04 mg/L, Quantile 2 group: 1.05-1.35 mg/L, and Quantile 3 group: 1.36-7.84 mg/L), and patients were followed up for 5 years. We used odds ratio (OR) and 95% confidence interval (CI) to compare the results. RESULTS The cystatin C and NT-ProBNP level in the cardiac function grade (NYHA) class IV group were higher than those in the class III group (P<0.05). Pearson correlation analysis showed that there was a positive correlation between cystatin C and NT-ProBNP log₁₀ transform in CHF patients (r=0.411). During 5-year follow-up, 231 patients died and the 5-year all-cause mortality rate was 55.26% (231/418). There was a significant difference in 5-year all-cause mortality among the 3 groups (P for trend=0.010). After adjusting for potential confounders by multivariate regression analysis, the Quantile 2 group vs. Quantile 1 group were OR=0.83, 95% CI 0.51 to 1.35, P=0.448, and the Quantile 3 group vs. Quantile 1 group were OR=1.71, 95% CI. 1.04 to 2.82, P=0.034. Curve fitting showed that cystatin C was positively correlated with 5-year all-cause mortality in CHF patients. CONCLUSIONS Cystatin C was positively correlated with cardiac function and NT-ProBNP in CHF patients. Cystatin C could be used as a serological index to evaluate the long-term prognosis of CHF patients.
Collapse
Affiliation(s)
- Xilin Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, P.R. China
| | - Ge Xu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Shiming Zhang
- Department of Cardiology, First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, P.R. China
| |
Collapse
|
6
|
Sharma AK, Persichetti J, Tale E, Prelvukaj G, Cropley T, Choudhury R. A computational examination of the binding interactions of amyloidβ and human cystatin C. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The physiological role of human cystatin C (HCC) in the brain of individuals suffering from Alzheimer’s disease (AD) is currently an uncertainty in the scientific community. The protein complex interface between HCC and amyloid[Formula: see text] (A[Formula: see text]), an aggregated protein in the AD brain, is of great interest due to the potential roles of HCC as an agonist and/or antagonist in AD progression. Thus, to understand the molecular details of HCC–A[Formula: see text] interactions, all-atom molecular dynamic simulations were performed in explicit water under physiological conditions. Rigid body protein–protein docking was utilized to obtain the best modes of interactions between A[Formula: see text] and HCC by using energy functions that comprise pairwise shape complementarity with desolvation and electrostatics. Subsequently, two top docking structures were simulated and evaluated for molecular interactions. A detailed trajectory analysis indicates favorable binding conformations between A[Formula: see text] and HCC where A[Formula: see text] goes through major conformational rearrangements while HCC retains its major secondary structures throughout the simulations. Root mean square deviation, radius of gyration and solvent accessible surface area analyses also suggest a larger conformational sampling for A[Formula: see text] in comparison to HCC. Moreover, hydrogen bonding and hydrophobic interactions were found to have important roles in the stability of complexes between A[Formula: see text] and HCC. Overall, the results obtained from this study provide molecular insight into the interaction pathways of A[Formula: see text] and HCC and emphasize the importance of noncovalent forces in biomolecular interactions of therapeutic significance.
Collapse
Affiliation(s)
- Arun K. Sharma
- Department of Chemistry and Physics, Wagner College, Staten Island, New York, USA
| | - Joseph Persichetti
- Department of Chemistry and Physics, Wagner College, Staten Island, New York, USA
| | - Ermin Tale
- Department of Chemistry and Physics, Wagner College, Staten Island, New York, USA
| | - Gent Prelvukaj
- Department of Chemistry and Physics, Wagner College, Staten Island, New York, USA
| | - Tyler Cropley
- Department of Chemistry and Physics, Wagner College, Staten Island, New York, USA
| | - Rajib Choudhury
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, USA
| |
Collapse
|
7
|
Zhang H, Zhang C, Dong XY, Zheng J, Sun Y. Design of nonapeptide LVFFARKHH: A bifunctional agent against Cu2+
-mediated amyloid β-protein aggregation and cytotoxicity. J Mol Recognit 2018; 31:e2697. [DOI: 10.1002/jmr.2697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/14/2017] [Accepted: 11/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Huan Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Chong Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering; The University of Akron; Akron OH 44325 USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|